zoukankan      html  css  js  c++  java
  • 《机器学习Python实现_10_13_集成学习_xgboost_分类的简单实现》

    一.简介

    xgboost分类分两种情况,二分类和多分类:

    (1) 二分类的思路与logistic回归一样,先对线性函数套一个sigmoid函数,然后再求交叉熵作为损失函数,所以只需要一组回归树并可实现;

    (2)而多分类的实现,思路同gbm_classifier一样,即同时训练多组回归树,每一组代表一个class,然后对其进行softmax操作,然后再求交叉熵做为损失函数

    下面对多分类的情况再推一次损失函数、一阶导、二阶导:

    softmax转换:

    [softmax(y^{hat})=softmax([y_1^{hat},y_2^{hat},...,y_n^{hat}])=frac{1}{sum_{i=1}^n e^{y_i^{hat}}}[e^{y_1^{hat}},e^{y_2^{hat}},...,e^{y_n^{hat}}] ]

    交叉熵:

    [cross\_entropy(y,p)=-sum_{i=1}^n y_ilog p_i ]

    (p_i)替换为(frac{e^{y_i^{hat}}}{sum_{i=1}^n e^{y_i^{hat}}}),得到损失函数如下:

    [L(y^{hat},y)=-sum_{i=1}^n y_ilog frac{e^{y_i^{hat}}}{sum_{j=1}^n e^{x_j^{hat}}}\ =-sum_{i=1}^n y_i(y_i^{hat}-logsum_{j=1}^n e^{y_j^{hat}})\ =logsum_{i=1}^n e^{y_i^{hat}}-sum_{i=1}^ny_iy_i^{hat}(由于是onehot展开,所以sum_{i=1}^n y_i=1) ]

    所以一阶导:

    [frac{partial L(y^{hat},y)}{partial y^{hat}}=softmax([y_1^{hat},y_2^{hat},...,y_n^{hat}])-[y_1,y_2,...,y_n]\ =softmax(y^{hat})-y ]

    二阶导:

    [frac{partial^2 L(y^{hat},y)}{partial {y^{hat}}^2}=softmax(y^{hat})(1-softmax(y^{hat})) ]

    二.代码实现

    import os
    os.chdir('../')
    from ml_models.ensemble import XGBoostBaseTree
    from ml_models import utils
    import copy
    import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline
    
    """
    xgboost分类树的实现,封装到ml_models.ensemble
    """
    
    
    class XGBoostClassifier(object):
        def __init__(self, base_estimator=None, n_estimators=10, learning_rate=1.0):
            """
            :param base_estimator: 基学习器
            :param n_estimators: 基学习器迭代数量
            :param learning_rate: 学习率,降低后续基学习器的权重,避免过拟合
            """
            self.base_estimator = base_estimator
            self.n_estimators = n_estimators
            self.learning_rate = learning_rate
            if self.base_estimator is None:
                self.base_estimator = XGBoostBaseTree()
            # 同质分类器
            if type(base_estimator) != list:
                estimator = self.base_estimator
                self.base_estimator = [copy.deepcopy(estimator) for _ in range(0, self.n_estimators)]
            # 异质分类器
            else:
                self.n_estimators = len(self.base_estimator)
    
            # 扩展class_num组分类器
            self.expand_base_estimators = []
    
        def fit(self, x, y):
            # 将y转one-hot编码
            class_num = np.amax(y) + 1
            y_cate = np.zeros(shape=(len(y), class_num))
            y_cate[np.arange(len(y)), y] = 1
    
            # 扩展分类器
            self.expand_base_estimators = [copy.deepcopy(self.base_estimator) for _ in range(class_num)]
    
            # 第一个模型假设预测为0
            y_pred_score_ = np.zeros(shape=(x.shape[0], class_num))
            # 计算一阶、二阶导数
            g = utils.softmax(y_pred_score_) - y_cate
            h = utils.softmax(y_pred_score_) * (1 - utils.softmax(y_pred_score_))
            # 训练后续模型
            for index in range(0, self.n_estimators):
                y_pred_score = []
                for class_index in range(0, class_num):
                    self.expand_base_estimators[class_index][index].fit(x, g[:, class_index], h[:, class_index])
                    y_pred_score.append(self.expand_base_estimators[class_index][index].predict(x))
                y_pred_score_ += np.c_[y_pred_score].T * self.learning_rate
                g = utils.softmax(y_pred_score_) - y_cate
                h = utils.softmax(y_pred_score_) * (1 - utils.softmax(y_pred_score_))
    
        def predict_proba(self, x):
            # TODO:并行优化
            y_pred_score = []
            for class_index in range(0, len(self.expand_base_estimators)):
                estimator_of_index = self.expand_base_estimators[class_index]
                y_pred_score.append(
                    np.sum(
                        [estimator_of_index[0].predict(x)] +
                        [self.learning_rate * estimator_of_index[i].predict(x) for i in
                         range(1, self.n_estimators - 1)] +
                        [estimator_of_index[self.n_estimators - 1].predict(x)]
                        , axis=0)
                )
            return utils.softmax(np.c_[y_pred_score].T)
    
        def predict(self, x):
            return np.argmax(self.predict_proba(x), axis=1)
    
    #造伪数据
    from sklearn.datasets import make_classification
    data, target = make_classification(n_samples=100, n_features=2, n_classes=2, n_informative=1, n_redundant=0,
                                       n_repeated=0, n_clusters_per_class=1, class_sep=.5,random_state=21)
    
    classifier = XGBoostClassifier()
    classifier.fit(data, target)
    utils.plot_decision_function(data, target, classifier)
    

    
    

    作者: 努力的番茄

    出处: https://www.cnblogs.com/zhulei227/

    关于作者:专注于机器学习、深度学习、强化学习、NLP等领域!

    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出.

  • 相关阅读:
    多态
    抽象类和接口
    面向对象3
    类的继承 设计模式
    面向对象2
    面向对象
    复习
    对json的简单认识
    关于AJAX
    PHP配置开发环境
  • 原文地址:https://www.cnblogs.com/zhulei227/p/14969728.html
Copyright © 2011-2022 走看看