zoukankan      html  css  js  c++  java
  • LeetCode

    Interleaving String

    2014.2.26 02:48

    Given s1s2s3, find whether s3 is formed by the interleaving of s1 and s2.

    For example,
    Given:
    s1 = "aabcc",
    s2 = "dbbca",

    When s3 = "aadbbcbcac", return true.
    When s3 = "aadbbbaccc", return false.

    Solution1:

      This problem can be solved with DFS, but the time is untolerable. Dynamic programming would be a better way out.

      The word "interleaving" means every letter from s3 must come from either s1 or s2, so every letter in s3 will be compared with s1 and s2.

      Let f[i][j] be the DP array. f[i][j] means whether s1[1:i] and s2[1:j] forms the interleaving string in s3[1:i+j]:

        1. f[0][0]=true.

        2. if s3[i+j]==s1[i] and f[i-1][j]==true, f[i][j]=true.

        3. if s3[i+j]==s2[j] and f[i][j-1]==true, f[i][j]=true.

      Total time and space complexities are both O(n^2).

    Accepted code:

     1 // 3CE, 1TLE, 2WA, 1AC, O(n^2) solution with DP, space can be optimized.
     2 class Solution {
     3 public:
     4     bool isInterleave(string s1, string s2, string s3) {
     5         int len1;
     6         int len2;
     7         int len3;
     8         
     9         len1 = (int)s1.length();
    10         len2 = (int)s2.length();
    11         len3 = (int)s3.length();
    12         if (len3 != len1 + len2) {
    13             return false;
    14         }
    15         
    16         if (len1 == 0) {
    17             return s2 == s3;
    18         } else if (len2 == 0) {
    19             return s1 == s3;
    20         }
    21         
    22         int i, j;
    23         dp.resize(len1 + 1);
    24         for (i = 0; i < len1 + 1; ++i) {
    25             dp[i].resize(len2 + 1);
    26         }
    27         
    28         dp[0][0] = 1;
    29         for (i = 1; i <= len1; ++i) {
    30             if (dp[i - 1][0] && s3[i - 1] == s1[i - 1]) {
    31                 dp[i][0] = 1;
    32             }
    33         }
    34         for (j = 1; j <= len2; ++j) {
    35             if (dp[0][j - 1] && s3[j - 1] == s2[j - 1]) {
    36                 dp[0][j] = 1;
    37             }
    38         }
    39         for (i = 1; i <= len1; ++i) {
    40             for (j = 1; j <= len2; ++j) {
    41                 dp[i][j] = 0;
    42                 dp[i][j] = dp[i][j] || (dp[i - 1][j] && (s3[i + j - 1] == s1[i - 1]));
    43                 dp[i][j] = dp[i][j] || (dp[i][j - 1] && (s3[i + j - 1] == s2[j - 1]));
    44             }
    45         }
    46         int result = dp[len1][len2];
    47         
    48         for (i = 0; i < len1 + 1; ++i) {
    49             dp[i].clear();
    50         }
    51         dp.clear();
    52         
    53         return result == 1;
    54     }
    55 private:
    56     vector<vector<int> > dp;
    57 };

    Solution2:

      Space-optimized version, only O(n) space is needed.

    Accepted code:

     1 // 1AC, space optimized.
     2 class Solution {
     3 public:
     4     bool isInterleave(string s1, string s2, string s3) {
     5         int len1;
     6         int len2;
     7         int len3;
     8         
     9         len1 = (int)s1.length();
    10         len2 = (int)s2.length();
    11         len3 = (int)s3.length();
    12         if (len3 != len1 + len2) {
    13             return false;
    14         }
    15         
    16         if (len1 == 0) {
    17             return s2 == s3;
    18         } else if (len2 == 0) {
    19             return s1 == s3;
    20         }
    21         
    22         if (len1 < len2) {
    23             return isInterleave(s2, s1, s3);
    24         }
    25         
    26         int i, j;
    27         dp.resize(2);
    28         for (i = 0; i < 2; ++i) {
    29             dp[i].resize(len2 + 1);
    30         }
    31         
    32         dp[0][0] = 1;
    33         for (j = 1; j <= len2; ++j) {
    34             if (dp[0][j - 1] && s3[j - 1] == s2[j - 1]) {
    35                 dp[0][j] = 1;
    36             } else {
    37                 dp[0][j] = 0;
    38             }
    39         }
    40         
    41         int flag = 1, nflag = !flag;
    42         for (i = 1; i <= len1; ++i) {
    43             if (dp[nflag][0] && s3[i - 1] == s1[i - 1]) {
    44                 dp[flag][0] = 1;
    45             } else {
    46                 dp[flag][0] = 0;
    47             }
    48             for (j = 1; j <= len2; ++j) {
    49                 dp[flag][j] = 0;
    50                 dp[flag][j] = dp[flag][j] || (dp[nflag][j] && (s3[i + j - 1] == s1[i - 1]));
    51                 dp[flag][j] = dp[flag][j] || (dp[flag][j - 1] && (s3[i + j - 1] == s2[j - 1]));
    52             }
    53             flag = !flag;
    54             nflag = !flag;
    55         }
    56         int result = dp[nflag][len2];
    57         
    58         for (i = 0; i < 2; ++i) {
    59             dp[i].clear();
    60         }
    61         dp.clear();
    62         
    63         return result == 1;
    64     }
    65 private:
    66     vector<vector<int> > dp;
    67 };
  • 相关阅读:
    SQL语句创建数据库,SQL语句删除数据库,SQL语句创建表,SQL语句删除表,SQL语句添加约束,SQL语句删除约束
    数据查询基础
    用SQL语句操作数据库
    2.样式表的分类
    1.CSS中的定位机制
    MySQL子查询subquery
    MySQL限制查询结果返回的数量limit
    MySQL对结果进行排序order by
    MySQL 查询结果分组 group by
    MySQL where 表达式
  • 原文地址:https://www.cnblogs.com/zhuli19901106/p/3568213.html
Copyright © 2011-2022 走看看