zoukankan      html  css  js  c++  java
  • 计算几何模板

    既然咱负责计算几何,就多刷一些题吧ww

    模板改编自刘汝佳

    点,线基础部分:

    const double pi=acos(-1.0);
    int dcmp(double x) {if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; }
    struct Vector
    {
        double x, y;
        Vector (double x=0, double y=0) :x(x),y(y) {}
        Vector operator + (const Vector &B) const { return Vector (x+B.x,y+B.y); }
        Vector operator - (const Vector &B) const { return Vector(x - B.x, y - B.y); }
        Vector operator * (const double &p) const { return Vector(x*p, y*p); }
        Vector operator / (const double &p) const { return Vector(x/p, y/p); }
        double operator * (const Vector &B) const { return x*B.x + y*B.y;}//点积
        double operator ^ (const Vector &B) const { return x*B.y - y*B.x;}//叉积
        bool operator < (const Vector &b) const { return x < b.x || (x == b.x && y < b.y); }
        bool operator ==(const Vector &b) const { return dcmp(x-b.x) == 0 && dcmp(y-b.y) == 0; }
    };
    typedef Vector Point;
    Point Read(){double x, y;scanf("%lf%lf", &x, &y);return Point(x, y);}
    double Length(Vector A){ return sqrt(A*A); }//向量的模
    double Angle(Vector A, Vector B){return acos(A*B / Length(A) / Length(B)); }//向量的夹角,返回值为弧度
    double Area2(Point A, Point B, Point C){ return (B-A)^(C-A); }//向量AB叉乘AC的有向面积
    Vector VRotate(Vector A, double rad){return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad));}//向量A旋转rad弧度
    Point  PRotate(Point A, Point B, double rad){return A + VRotate(B-A, rad);}//将B点绕A点旋转rad弧度
    Vector Normal(Vector A){double l = Length(A);return Vector(-A.y/l, A.x/l);}//求向量A向左旋转90°的单位法向量,调用前确保A不是零向量
    
    Point GetLineIntersection/*求直线交点,调用前要确保两条直线有唯一交点*/(Point P, Vector v, Point Q, Vector w){double t = (w^(P - Q)) / (v^w);return P + v*t;}//在精度要求极高的情况下,可以自定义分数类
    double DistanceToLine/*P点到直线AB的距离*/(Point P, Point A, Point B){Vector v1 = B - A, v2 = P - A;return fabs(v1^v2) / Length(v1);}//不加绝对值是有向距离
    double DistanceToSegment/*点到线段的距离*/(Point P, Point A, Point B)
    {
        if (A==B) return Length(P-A);
        Vector v1=B-A,v2=P-A,v3=P-B;
        if (dcmp(v1*v2)<0) return Length(v2);else
        if (dcmp(v1*v3)>0) return Length(v3);else
        return fabs(v1^v2)/Length(v1);
    }
    
    Point GetLineProjection/*点在直线上的射影*/(Point P, Point A, Point B)
    {
        Vector v=B-A;
        return A+v*((v*(P-A))/(v*v));
    }
    
    bool OnSegment/*判断点是否在线段上(含端点)*/(Point P,Point a1,Point a2)
    {
        Vector v1=a1-P,v2=a2-P;
        if (dcmp(v1^v2)==0 && min(a1.x,a2.x)<=P.x  && P.x<=max(a1.x,a2.x)  && min(a1.y,a2.y)<=P.y && P.y<=max(a1.y,a2.y)) return true;
        return false;
    }
    
    bool SegmentInter/*线段相交判定*/(Point a1, Point a2, Point b1, Point b2)
    {
        //if (OnSegment(a1,b1,b2) || OnSegment(a2,b1,b2) || OnSegment(b1,a1,a2) || OnSegment(b2,a1,a2)) return 1;
        //如果只判断线段规范相交(不算交点),上面那句可以删掉
        double c1=(a2-a1)^(b1-a1),c2=(a2-a1)^(b2-a1);
        double c3=(b2-b1)^(a1-b1),c4=(b2-b1)^(a2-b1);
        return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
    }
    
    bool InTri/*判断点是否在三角形内*/(Point P, Point a,Point b,Point c)
    {
        if (dcmp(fabs((c-a)^(c-b))-fabs((P-a)^(P-b))-fabs((P-b)^(P-c))-fabs((P-a)^(P-c)))==0) return true;
        return false;
    }
    
    double PolygonArea/*求多边形面积,注意凸包P序号从0开始*/(Point *P ,int n)
    {
        double ans = 0.0;
        for(int i=1;i<n-1;i++)
            ans+=(P[i]-P[0])^(P[i+1]-P[0]);
        return ans/2;
    }
    bool CrossOfSegAndLine/*判断线段是否与直线相交*/(Point a1,Point a2,Point b1,Vector b2)
    {
        if (OnSegment(b1,a1,a2) || OnSegment(b1+b2,a1,a2)) return true;
        return dcmp(b2^(a1-b1))*dcmp(b2^(a2-b1))<0;
    }

    半平面交

    struct Line//有向直线
    {
        Point p;
        Vector v;
        double ang;
        Line()    { }
        Line(Point p, Vector v): p(p), v(v)    { ang = atan2(v.y, v.x); }
        Point point(double t)
        {
            return p + v*t;
        }
        bool operator < (const Line& L) const
        {
            if (fabs(ang-L.ang)<eps)
            {
                return ((v)^(L.p-p))<0;
            }
            return ang < L.ang;
        }
    };
    
    bool OnRight(Line L,Point p)//判断是否p点在有向直线右边
    {
        return ((L.v^(p-L.p))<0);
    }
    Point GetIntersection (Line a,Line b)//求两个有向直线的交点
    {
        Vector u=a.p-b.p;
        double t=(b.v^u)/(a.v^b.v);
        return a.p+a.v*t;
    }
    
    
    bool IsParallel(Line a,Line b)//判断两条有向直线是否平行
    {
        if (dcmp(a.v ^ b.v)==0) return 1;
        return 0;
    }
    
    Line q[MAXN];
    int HalfPlane(Line *L,int n,Point *poly)//半平面交,输入直线数组L(需要保证逆时针顺序),n是直线的个数,poly用于输出,返回值为poly中点的个数
    {
        sort(L,L+n);
        int m,i;
        for (m=i=1;i<n;i++)
        {
            if (dcmp(L[i].ang-L[i-1].ang)!=0) L[m++]=L[i];
        }
        n=m;
        int l=0,r=1;
        q[0]=L[0];q[1]=L[1];
        for (int i=2;i<n;i++)
        {
            //if (IsParallel(q[r],q[r-1]) || IsParallel(q[l],q[l+1])) return 0;
            while (l < r && OnRight(L[i],GetIntersection(q[r-1],q[r]))) r--;
            while (l < r && OnRight(L[i],GetIntersection(q[l],q[l+1]))) l++;
            q[++r]=L[i];
        }
        while (l<r && OnRight(q[l],GetIntersection(q[r-1],q[r]))) r--;
        while (l<r && OnRight(q[r],GetIntersection(q[l],q[l+1]))) l++;
        if (r-l<=1 ) return 0;
        q[r+1]=q[l];
        m=0;
        for (int i=l;i<=r;i++) poly[m++]=GetIntersection(q[i],q[i+1]);
        return m;
    }

    凸包

    int ConvexHull(Point* p,int n,Point* ch)
    {
        sort(p,p+n);
        int m=0;
        for(int i=0;i<n;++i)
        {
            while(m>1&&((ch[m-1]-ch[m-2])^(p[i]-ch[m-2]))<=0) m--;
            ch[m++]=p[i];
        }
        int k=m;
        for(int i=n-2;i>=0;i--)
        {
            while(m>k&&((ch[m-1]-ch[m-2])^(p[i]-ch[m-2]))<=0) m--;
            ch[m++]=p[i];
        }
        if(n>1) m--;
        return m;
    }

    基础模板补充:

    double Cross/*B-A和C-A的叉积*/(Point A, Point B,Point C)
    {
        return (B-A)^(C-A);
    }
    
    double dis_pair_seg/*两条线段间的最短距离*/(Point p1, Point p2, Point p3, Point p4)
    {
        return min(min(DistanceToSegment(p1, p3, p4), DistanceToSegment(p2, p3, p4)),
         min(DistanceToSegment(p3, p1, p2), DistanceToSegment(p4, p1, p2)));
    }

    旋转卡壳

    double rotating_calipers(Point *ch,int n)
    {
        int q=1;
        double ans=0;
        ch[n]=ch[0];
        for(int p=0; p<n; p++)
        {
            while(((ch[q+1]-ch[p+1])^(ch[p]-ch[p+1]))>((ch[q]-ch[p+1])^(ch[p]-ch[p+1]))) q=(q+1)%n;
            ans=max(ans,max(Length(ch[p]-ch[q]),Length(ch[p+1]-ch[q+1])));
        }
        return ans;
    }

     为什么是大于号而不是大于等于号?因为ch默认是凸多边形

    转角法判定点P是否在多边形内部(多边形不一定是凸多边形)

    int isPointInPolygon(Point P, Point* Poly, int n)//转角法判定点P是否在多边形内部
    {
        int wn=0;
        for(int i = 0; i < n; ++i)
        {
            if(OnSegment(P, Poly[i], Poly[(i+1)%n]))    return -1;    //在边界上
            int k = dcmp((Poly[(i+1)%n] - Poly[i])^( P - Poly[i]));
            int d1 = dcmp(Poly[i].y - P.y);
            int d2 = dcmp(Poly[(i+1)%n].y - P.y);
            if(k > 0 && d1 <= 0 && d2 > 0)    wn++;
            if(k < 0 && d2 <= 0 && d1 > 0)    wn--;
        }
        if(wn != 0)    return 1;    //内部
        return 0;                //外部
    }

    关于圆的一些模板

    圆的定义:

    struct Circle{
         Point c;
         double r;
         Circle() {}
         Circle(Point c, double r) : c(c), r(r) {}
         Point point(double a){
              return Point(c.x + cos(a) * r, c.y + sin(a) * r);
         }
         void read(){
              c.read();
              scanf("%lf", &r);
         }
    };
  • 相关阅读:
    python后端项目编码规范检查——pre-commit的使用
    centos7安装docker-compose
    python使用pandas将MySQL表数据写入Excel表格
    Sublime Text3中隐藏了菜单,怎么显示出来?
    Docker学习篇
    服务端|性能测试入门指南 (慎入: 6000 字长文)
    登录界面测试用例设计
    Date与String的转换,Date的加减计算(前一小时,前一个月、、、)
    关于SQL分页计算公式
    Java
  • 原文地址:https://www.cnblogs.com/zhyfzy/p/4770173.html
Copyright © 2011-2022 走看看