zoukankan      html  css  js  c++  java
  • cascading--wordcount

    在eclipse下运行wordcount,使用cascading封装

    准备:centos系统,jdk,hadoop,eclipse,cascading的lib包,官网可下载,自带cascading封装的wordcount源码,以及爬虫数据data目录,这些均可以在官网下载

    我是在cascading官网把材料下载好后,在eclipse中运行,可以得到测试数据

    难点:cascading的版本与官网自带的wordcount实例可能不匹配,这需要自己自行修改,我的cascading版本不是在官网下载的

    给出我的运行结果图:

    代码如下:完整版

    package com.zjf.cascading.example;
    
    /*
     * WordCount example
     * zjf-pc
     * Copyright (c) 2007-2012 Concurrent, Inc. All Rights Reserved.
     * Project and contact information: http://www.concurrentinc.com/
     */
    
    import java.util.Map;
    import java.util.Properties;
    
    import cascading.cascade.Cascade;
    import cascading.cascade.CascadeConnector;
    import cascading.cascade.Cascades;
    import cascading.flow.Flow;
    import cascading.flow.FlowConnector;
    import cascading.operation.Identity;
    import cascading.operation.aggregator.Count;
    import cascading.operation.regex.RegexFilter;
    import cascading.operation.regex.RegexGenerator;
    import cascading.operation.regex.RegexReplace;
    import cascading.operation.regex.RegexSplitter;
    import cascading.operation.xml.TagSoupParser;
    import cascading.operation.xml.XPathGenerator;
    import cascading.operation.xml.XPathOperation;
    import cascading.pipe.Each;
    import cascading.pipe.Every;
    import cascading.pipe.GroupBy;
    import cascading.pipe.Pipe;
    import cascading.pipe.SubAssembly;
    import cascading.scheme.SequenceFile;
    import cascading.scheme.TextLine;
    import cascading.tap.Tap;
    import cascading.tap.Hfs;
    import cascading.tap.Lfs;
    import cascading.tuple.Fields;
    
    public class WordCount
      {
      @SuppressWarnings("serial")
    private static class ImportCrawlDataAssembly extends SubAssembly
        {
        public ImportCrawlDataAssembly( String name )
          {
          //拆分文本行到url和raw
          RegexSplitter regexSplitter = new RegexSplitter( new Fields( "url", "raw" ) );
          Pipe importPipe = new Each( name, new Fields( "line" ), regexSplitter );
          //删除所有pdf文档
          importPipe = new Each( importPipe, new Fields( "url" ), new RegexFilter( ".*\.pdf$", true ) );
          //把":n1"替换为"
    ",丢弃无用的字段
          RegexReplace regexReplace = new RegexReplace( new Fields( "page" ), ":nl:", "
    " );
          importPipe = new Each( importPipe, new Fields( "raw" ), regexReplace, new Fields( "url", "page" ) );
          //此句强制调用
          setTails( importPipe );
          }
        }
    
      @SuppressWarnings("serial")
    private static class WordCountSplitAssembly extends SubAssembly
        {
        public WordCountSplitAssembly( String sourceName, String sinkUrlName, String sinkWordName )
          {
          //创建一个新的组件,计算所有页面中字数,和一个页面中的字数
          Pipe pipe = new Pipe(sourceName);
         //利用TagSoup将HTML转成XHTML,只保留"url"和"xml"去掉其它多余的
          pipe = new Each( pipe, new Fields( "page" ), new TagSoupParser( new Fields( "xml" ) ), new Fields( "url", "xml" ) );
          //对"xml"字段运用XPath(XML Path Language)表达式,提取"body"元素
          XPathGenerator bodyExtractor = new XPathGenerator( new Fields( "body" ), XPathOperation.NAMESPACE_XHTML, "//xhtml:body" );
          pipe = new Each( pipe, new Fields( "xml" ), bodyExtractor, new Fields( "url", "body" ) );
          //运用另一个XPath表达式删除所有元素,只保留文本节点,删除在"script"元素中的文本节点
          String elementXPath = "//text()[ name(parent::node()) != 'script']";
          XPathGenerator elementRemover = new XPathGenerator( new Fields( "words" ), XPathOperation.NAMESPACE_XHTML, elementXPath );
          pipe = new Each( pipe, new Fields( "body" ), elementRemover, new Fields( "url", "words" ) );
          //用正则表达式将文档打乱成一个个独立的单词,和填充每个单词(新元组)到当前流使用"url"和"word"字段
          RegexGenerator wordGenerator = new RegexGenerator( new Fields( "word" ), "(?<!\pL)(?=\pL)[^ ]*(?<=\pL)(?!\pL)" );
          pipe = new Each( pipe, new Fields( "words" ), wordGenerator, new Fields( "url", "word" ) );
          //按"url"分组
          Pipe urlCountPipe = new GroupBy( sinkUrlName, pipe, new Fields( "url", "word" ) );
          urlCountPipe = new Every( urlCountPipe, new Fields( "url", "word" ), new Count(), new Fields( "url", "word", "count" ) );
          //按"word"分组
          Pipe wordCountPipe = new GroupBy( sinkWordName, pipe, new Fields( "word" ) );
          wordCountPipe = new Every( wordCountPipe, new Fields( "word" ), new Count(), new Fields( "word", "count" ) );
          //此句强制调用
          setTails( urlCountPipe, wordCountPipe );
          }
        }
    
      public static void main( String[] args )
        {
          //设置当前工作jar
         Properties properties = new Properties(); 
         FlowConnector.setApplicationJarClass(properties, WordCount.class);
         FlowConnector flowConnector = new FlowConnector(properties);
         /**
          * 在运行设置的参数里设置如下代码:
          * 右击Main.java,选择run as>run confugrations>java application>Main>Agruments->Program arguments框内写入如下代码
          * data/url+page.200.txt output local 
          * 分析:
          * args[0]代表data/url+page.200.txt,它位于当前应用所在的目录下面,且路径必须是本地文件系统里的路径
          * 我的所在目录是/home/hadoop/app/workspace/HadoopApplication001/data/url+page.200.txt
          * 且该路径需要自己创建,url+page.200.txt文件也必须要有,可以在官网下下载
          * 
          * args[1]代表output文件夹,第二个参数,它位于分布式文件系统hdfs中
          * 我的路径是:hdfs://s104:9000/user/hadoop/output,该路径需要自己创建
          * 在程序运行成功后,output目录下会自动生成三个文件夹pages,urls,words
          * 里面分别包含所有的page,所有的url,所有的word
          * 
          * args[2]代表local,第三个参数,它位于本地文件系统中
          * 我的所在目录是/home/hadoop/app/workspace/HadoopApplication001/local
          * 该文件夹不需要自己创建,在程序运行成功后会自动生成在我的上述目录中,
          * 且在该local文件夹下会自动生成两个文件夹urls和words,里面分别是url个数和word个数
          */
          String inputPath = args[ 0 ];
          String pagesPath = args[ 1 ] + "/pages/";
          String urlsPath = args[ 1 ] + "/urls/";
          String wordsPath = args[ 1 ] + "/words/";
          String localUrlsPath = args[ 2 ] + "/urls/";
          String localWordsPath = args[ 2 ] + "/words/";
    
        // import a text file with crawled pages from the local filesystem into a Hadoop distributed filesystem
        // the imported file will be a native Hadoop sequence file with the fields "page" and "url"
        // note this examples stores crawl pages as a tabbed file, with the first field being the "url"
        // and the second being the "raw" document that had all new line chars ("
    ") converted to the text ":nl:".
          
        //初始化Pipe管道处理爬虫数据装配,返回字段url和page
        Pipe importPipe = new ImportCrawlDataAssembly( "import pipe" );
    
         //创建tap实例
        Tap localPagesSource = new Lfs( new TextLine(), inputPath );
        Tap importedPages = new Hfs( new SequenceFile( new Fields( "url", "page" ) ), pagesPath );
    
        //链接pipe装配到tap实例
        Flow importPagesFlow = flowConnector.connect( "import pages", localPagesSource, importedPages, importPipe );
    
        //拆分之前定义的wordcount管道到新的两个管道url和word
        // these pipes could be retrieved via the getTails() method and added to new pipe instances
        SubAssembly wordCountPipe = new WordCountSplitAssembly( "wordcount pipe", "url pipe", "word pipe" );
    
        //创建hadoop SequenceFile文件存储计数后的结果
        Tap sinkUrl = new Hfs( new SequenceFile( new Fields( "url", "word", "count" ) ), urlsPath );
        Tap sinkWord = new Hfs( new SequenceFile( new Fields( "word", "count" ) ), wordsPath );
    
        //绑定多个pipe和tap,此处指定的是pipe名称
        Map<String, Tap> sinks = Cascades.tapsMap( new String[]{"url pipe", "word pipe"}, Tap.taps( sinkUrl, sinkWord ) );
        //wordCountPipe指的是一个装配
        Flow count = flowConnector.connect( importedPages, sinks, wordCountPipe );
    
       //创建一个装配,导出hadoop sequenceFile 到本地文本文件
        Pipe exportPipe = new Each( "export pipe", new Identity() );
        Tap localSinkUrl = new Lfs( new TextLine(), localUrlsPath );
        Tap localSinkWord = new Lfs( new TextLine(), localWordsPath );
    
       // 使用上面的装配来连接两个sink
        Flow exportFromUrl = flowConnector.connect( "export url", sinkUrl, localSinkUrl, exportPipe );
        Flow exportFromWord = flowConnector.connect( "export word", sinkWord, localSinkWord, exportPipe );
    
        ////装载flow,顺序随意,并执行
        Cascade cascade = new CascadeConnector().connect( importPagesFlow, count, exportFromUrl, exportFromWord );
        cascade.complete();
        }
      }
  • 相关阅读:
    基本排序算法汇总
    贪心算法题目汇总
    STL中sort
    栈和队列题目汇总
    cron 计划任务 在线配置
    各种less概念通俗解释
    node 子线程 进程
    内存池
    RPC简介
    koa express 对比
  • 原文地址:https://www.cnblogs.com/zjf-293916/p/6809015.html
Copyright © 2011-2022 走看看