zoukankan      html  css  js  c++  java
  • 模型评估和指标

    指标
            错误率(Error Rate) :m个样本中,有a个样本分类错误    ER= a/m                      

            精准率(Accuray) = 1 - ER

            均方误差(Mean Square Error):

                             
                             

                              

                                


            过拟合(overfit):

          从训练样本中学出适用于所有潜在样本的"普遍规律",这样才能在遇到新样本时做出正确的判别.然而,当学习器把训    练样本学得"太好"了的时候,很可能巳经把训练样本自身的一些特点当作了所有潜在样本都会具有的一般性质,这样就会导致泛化性能下降。

          表现: 女神冲我微笑了--->女神喜欢我。    

                              

            欠拟合(underfit):

          拟合的数据偏差还比较大,high bias

    评估方式

           数据分为训练集,测试集和验证集,训练集用于训练模型,测试集和验证集是用来评估模型的“好坏”                             

     划分方式:

           留出法(hold out):数据集直接划分为两份,一份训练,一份测试

           交叉验证法(cross validate):10折10次交叉验证法,9份训练,1份测试,最终求均值,作为评估结果

           自助法:随机采样,总有0.368样本永远取不到

  • 相关阅读:
    PowerDesigner如何导出建表sql脚本(转)
    excel插入行时提示不能将对象移到工作表外,怎么解决!!
    Axure知识点
    移动互联网学习的点
    什么是大数据?
    [Android开源项目] GitHub开源项目总结 (转)
    程序员自我提高的几点建议 很实诚(转)
    程序员必须进行的10项投资(转)
    安卓版本的问题
    Android APK反编译详解(转)
  • 原文地址:https://www.cnblogs.com/zjuthantics/p/9706653.html
Copyright © 2011-2022 走看看