zoukankan      html  css  js  c++  java
  • CodeForces C. Maximal Intersection

    http://codeforces.com/contest/1029/problem/C

    You are given nn segments on a number line; each endpoint of every segment has integer coordinates. Some segments can degenerate to points. Segments can intersect with each other, be nested in each other or even coincide.

    The intersection of a sequence of segments is such a maximal set of points (not necesserily having integer coordinates) that each point lies within every segment from the sequence. If the resulting set isn't empty, then it always forms some continuous segment. The length of the intersection is the length of the resulting segment or 00 in case the intersection is an empty set.

    For example, the intersection of segments [1;5][1;5] and [3;10][3;10] is [3;5][3;5] (length 22), the intersection of segments [1;5][1;5] and [5;7][5;7] is [5;5][5;5](length 00) and the intersection of segments [1;5][1;5] and [6;6][6;6] is an empty set (length 00).

    Your task is to remove exactly one segment from the given sequence in such a way that the intersection of the remaining (n1)(n−1)segments has the maximal possible length.

    Input

    The first line contains a single integer nn (2n31052≤n≤3⋅105) — the number of segments in the sequence.

    Each of the next nn lines contains two integers lili and riri (0liri1090≤li≤ri≤109) — the description of the ii-th segment.

    Output

    Print a single integer — the maximal possible length of the intersection of (n1)(n−1) remaining segments after you remove exactly one segment from the sequence.

    Examples
    input
    Copy
    4
    1 3
    2 6
    0 4
    3 3
    output
    Copy
    1
    input
    Copy
    5
    2 6
    1 3
    0 4
    1 20
    0 4
    output
    Copy
    2
    input
    Copy
    3
    4 5
    1 2
    9 20
    output
    Copy
    0
    input
    Copy
    2
    3 10
    1 5
    output
    Copy
    7

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    
    #define inf 0x3f3f3f3f
    const int maxn = 300010 + 10;
    int N;
    
    struct Node {
        int l;
        int r;
    }S[maxn], Q[maxn], A[maxn];
    
    int main() {
        scanf("%d", &N);
        S[0].r = inf, S[0].l = -inf;
        for(int i = 1; i <= N; i ++) {
            scanf("%d%d", &A[i].l, &A[i].r);
            S[i].l = max(S[i - 1].l, A[i].l);
            S[i].r = min(S[i - 1].r, A[i].r);
        }
    
        Q[N + 1].r = inf, Q[N + 1].l = -inf;
        for(int i = N; i >= 1; i --) {
            Q[i].l = max(A[i].l, Q[i + 1].l);
            Q[i].r = min(A[i].r, Q[i + 1].r);
        }
    
        int ans = 0;
        for(int i = 1; i <= N; i ++) {
            ans = max(ans, (min(Q[i + 1].r, S[i - 1].r) - max(Q[i + 1].l, S[i - 1].l)));
        }
        printf("%d
    ", ans);
        return 0;
    }
    

      

  • 相关阅读:
    捕获Java线程池执行任务抛出的异常
    Java Singleton 单例模式
    深度解析Java内存的原型及工作原理
    使用Spring管理数据源连接池
    Java中用内存映射处理大文件
    基于Java阻塞队列的搜索实例
    Java学习之将图片文件保存到数据库
    Java使用反射调用方法
    Java程序员易犯的10个SQL错误
    Hibernate中的数据库增改删查操作
  • 原文地址:https://www.cnblogs.com/zlrrrr/p/9822794.html
Copyright © 2011-2022 走看看