zoukankan      html  css  js  c++  java
  • Spark RDD/Core 编程 API入门系列之map、filter、textFile、cache、对Job输出结果进行升和降序、union、groupByKey、join、reduce、lookup(一)

    1、以本地模式实战map和filter

    2、以集群模式实战textFile和cache

    3、对Job输出结果进行升和降序

    4、union

    5、groupByKey

    6、join

    7、reduce

    8、lookup

    1、以本地模式实战map和filter

    以local的方式,运行spark-shell。

    spark@SparkSingleNode:~$ cd /usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin
    spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin$ pwd
    /usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin
    spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin$ ./spark-shell

     从集合中创建RDD,spark中主要提供了两种函数:parallelize和makeRDD,

    scala> val rdd = sc.parallelize(List(1,2,3,4,5))
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:21

    scala> val mappedRDD = rdd.map(2*_)
    mappedRDD: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[1] at map at <console>:23

    scala> mappedRDD.collect

    得到

    res0: Array[Int] = Array(2, 4, 6, 8, 10)

    scala>

    scala> val filteredRDD = mappedRDD.filter(_ > 4)
    16/09/26 20:32:29 INFO storage.BlockManagerInfo: Removed broadcast_0_piece0 on localhost:40688 in memory (size: 1218.0 B, free: 534.5 MB)
    16/09/26 20:32:30 INFO spark.ContextCleaner: Cleaned accumulator 1
    filteredRDD: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[2] at filter at <console>:25

    scala> filteredRDD.collect

     

    注意,一般,生产环境和正宗的写法是。

    scala> val filteredRDDAgain = sc.parallelize(List(1,2,3,4,5)).map(2 * _).filter(_ > 4).collect

    2、以集群模式实战textFile和cache

     启动hadoop集群

    spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ jps
    8457 Jps
    spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ sbin/start-dfs.sh

    启动spark集群

    spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6$ sbin/start-all.sh

     spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin$ ./spark-shell --master spark://SparkSingleNode:7077 

     

    读取该文件

    scala> val rdd = sc.textFile("/README.md")

     使用count统计一下该文件的行数

    scala> rdd.count

     

    took 7.018386 s

    res0: Long = 98

    花了时间7.018386 s

    通过观察RDD.scala源代码即可知道cache和persist的区别:

    def persist(newLevel: StorageLevel): this.type = {
      if (storageLevel != StorageLevel.NONE && newLevel != storageLevel) {
        throw new UnsupportedOperationException( "Cannot change storage level of an RDD after it was already assigned a level")
      }
      sc.persistRDD(this)
      sc.cleaner.foreach(_.registerRDDForCleanup(this))
      storageLevel = newLevel
      this
    }
    /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
    def persist(): this.type = persist(StorageLevel.MEMORY_ONLY)

    /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
    def cache(): this.type = persist()

    可知:
    1)RDD的cache()方法其实调用的就是persist方法,缓存策略均为MEMORY_ONLY;
    2)可以通过persist方法手工设定StorageLevel来满足工程需要的存储级别;
    3)cache或者persist并不是action;
    附:cache和persist都可以用unpersist来取消

    进行缓存

    scala> rdd.cache
    res1: rdd.type = MapPartitionsRDD[1] at textFile at <console>:21

    执行count,使得缓存生效

    scala> rdd.count

     

    took 2.055063 s
    res2: Long = 98

    花了时间 2.055063 s

     

    再执行,count

    took 0.583177 s
    res3: Long = 98

    花了时间 0.583177 s

    总结,我们直接基于cache缓存后的数据,计算所消耗时间大大减少。

     正在进行中的spark-shell

     接着,对上面的RDD,进行wordcount操作

    scala> val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_)
    wordcount: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[4] at reduceByKey at <console>:23

    scala> wordcount.collect

     通过saveAsTextFile把数据保存起来

    res4: Array[(String, Int)] = Array((package,1), (this,1), (Version"](http://spark.apache.org/docs/latest/building-spark.html#specifying-the-hadoop-version),1), (Because,1), (Python,2), (cluster.,1), (its,1), ([run,1), (general,2), (have,1), (pre-built,1), (locally.,1), (locally,2), (changed,1), (sc.parallelize(1,1), (only,1), (several,1), (This,2), (basic,1), (Configuration,1), (learning,,1), (documentation,3), (YARN,,1), (graph,1), (Hive,2), (first,1), (["Specifying,1), ("yarn-client",1), (page](http://spark.apache.org/documentation.html),1), ([params]`.,1), (application,1), ([project,2), (prefer,1), (SparkPi,2), (<http://spark.apache.org/>,1), (engine,1), (version,1), (file,1), (documentation,,1), (MASTER,1), (example,3), (distribution.,1), (are,1), (params,1), (scala>,1), (DataFrames...
    scala> wordcount.saveAsTextFile("/result")

    只是,仅仅对每行,做了wordcount而已。

    3、对Job输出结果进行升和降序

    升序

    scala> val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_).map(x => (x._2,x._1)).sortByKey(true).map(x => (x._2,x._1)).saveAsTextFile("/resultAscSorted")

     

    同理,去下载,不多赘述。

    变了

    scala> val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_).map(x => (x._2,x._1)).sortBy(true).map(x => (x._2,x._1)).saveAsTextFile("/resultAscSorted")
    <console>:23: error: type mismatch;
    found : Boolean(true)
    required: ((Int, String)) => ?
    val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_).map(x => (x._2,x._1)).sortBy(true).map(x => (x._2,x._1)).saveAsTextFile("/resultAscSorted")
    ^

    scala>

     降序

    scala> val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_).map(x => (x._2,x._1)).sortByKey(false).map(x => (x._2,x._1)).saveAsTextFile("/resultDescSorted")

     

    下载,同理

     此刻,成功对Job输出结果进行了排序。

    4、union

    union的使用

    scala> val rdd1 = sc.parallelize(List(('a',1),('b',1)))
    rdd1: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[26] at parallelize at <console>:21

    scala> val rdd2 = sc.parallelize(List(('c',1),('d',1)))
    rdd2: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[27] at parallelize at <console>:21

    scala> rdd1 union rdd2
    res6: org.apache.spark.rdd.RDD[(Char, Int)] = UnionRDD[28] at union at <console>:26

    scala> val result = rdd1 union rdd2
    result: org.apache.spark.rdd.RDD[(Char, Int)] = UnionRDD[29] at union at <console>:25

    使用collect操作,查看一下执行结果

    scala> result.collect

    res7: Array[(Char, Int)] = Array((a,1), (b,1), (c,1), (d,1))

    5、groupByKey

    scala> val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).groupByKey
    wordcount: org.apache.spark.rdd.RDD[(String, Iterable[Int])] = ShuffledRDD[32] at groupByKey at <console>:23

    scala> wordcount.collect

    res8: Array[(String, Iterable[Int])] = Array((package,CompactBuffer(1)), (this,CompactBuffer(1)), (Version"](http://spark.apache.org/docs/latest/building-spark.html#specifying-the-hadoop-version),CompactBuffer(1)), (Because,CompactBuffer(1)), (Python,CompactBuffer(1, 1)), (cluster.,CompactBuffer(1)), (its,CompactBuffer(1)), ([run,CompactBuffer(1)), (general,CompactBuffer(1, 1)), (YARN,,CompactBuffer(1)), (have,CompactBuffer(1)), (pre-built,CompactBuffer(1)), (locally.,CompactBuffer(1)), (locally,CompactBuffer(1, 1)), (changed,CompactBuffer(1)), (sc.parallelize(1,CompactBuffer(1)), (only,CompactBuffer(1)), (several,CompactBuffer(1)), (learning,,CompactBuffer(1)), (basic,CompactBuffer(1)), (first,CompactBuffer(1)), (This,CompactBuffer(1, 1)), (documentation,CompactBuffer(1, 1, 1)), (Confi...
    scala>

    6、join

     概念知识,参考

    http://www.cnblogs.com/goforward/p/4748128.html  

    scala> val rdd1 = sc.parallelize(List(('a',1),('a',2),('b',3),('b',4)))
    rdd1: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[33] at parallelize at <console>:21

    scala> val rdd2 = sc.parallelize(List(('a',5),('a',6),('b',7),('b',8)))
    rdd2: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[34] at parallelize at <console>:21

    scala> rdd1 join rdd2
    res9: org.apache.spark.rdd.RDD[(Char, (Int, Int))] = MapPartitionsRDD[37] at join at <console>:26

    scala> val result = rdd1 join rdd2
    result: org.apache.spark.rdd.RDD[(Char, (Int, Int))] = MapPartitionsRDD[40] at join at <console>:25

    scala> result.collect

     

    res10: Array[(Char, (Int, Int))] = Array((b,(3,7)), (b,(3,8)), (b,(4,7)), (b,(4,8)), (a,(1,5)), (a,(1,6)), (a,(2,5)), (a,(2,6)))

    scala>

    可见,join操作,完全是一个笛卡尔积的操作。

    7、reduce

    reduce本身啊,在RDD操作里,属于一个action类型的操作,会导致job作业的提交和执行。

    scala> val rdd = sc.parallelize(List(1,2,3,4,5))
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[41] at parallelize at <console>:21

    scala> rdd.reduce(_+_)

    res11: Int = 15

    8、lookup

    scala> val rdd2 = sc.parallelize(List(('a',5),('a',6),('b',7),('b',8)))
    rdd2: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[42] at parallelize at <console>:21

    scala> rdd2.lookup('a')    //返回一个seq, (5, 6) 是把a对应的所有元素的value提出来组成一个seq

     

    res12: Seq[Int] = WrappedArray(5, 6)

  • 相关阅读:
    IIS配置
    sql表值函数中实现类似split功能
    毕至居预约系统设计图第十二组
    毕至居预约系统研发需求分析——第十二组
    MASA Blazor多页签组件
    关于Linux Oracle下的表空间文件删除不干净的处理方法
    命令行下对apk签名
    android自定义绘制TableLayout,类似.net中DataGrid控件
    使用Arcgis tools fix后Android不能生成Apk包异常解决方法
    SyncML一种平台无关的信息同步标准协议
  • 原文地址:https://www.cnblogs.com/zlslch/p/5910869.html
Copyright © 2011-2022 走看看