zoukankan      html  css  js  c++  java
  • Spark RDD概念学习系列之rdd持久化、广播、累加器(十八)

    1、rdd持久化

    2、广播

    3、累加器

    1、rdd持久化

      通过spark-shell,可以快速的验证我们的想法和操作!

    启动hdfs集群

    spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ sbin/start-dfs.sh

    启动spark集群

    spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6$ sbin/start-all.sh

     启动spark-shell

    spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin$ ./spark-shell --master spark://SparkSingleNode:7077 --executor-memory 1g

    reduce

    scala> sc
    res0: org.apache.spark.SparkContext = org.apache.spark.SparkContext@3bcc8f13

    scala> val numbers = sc.parallelize
    <console>:21: error: missing arguments for method parallelize in class SparkContext;
    follow this method with `_' if you want to treat it as a partially applied function
    val numbers = sc.parallelize
    ^

    scala> val numbers = sc.parallelize(1 to 100)
    numbers: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:21

    scala> numbers.reduce(_+_)

    took 11.790246 s
    res1: Int = 5050

    可见,reduce是个action。

    scala> val result = numbers.map(2*_)
    result: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[1] at map at <console>:23

    scala> val data = result.collect

    reduce源码

    /**
    * Reduces the elements of this RDD using the specified commutative and
    * associative binary operator.
    */
    def reduce(f: (T, T) => T): T = withScope {
    val cleanF = sc.clean(f)
    val reducePartition: Iterator[T] => Option[T] = iter => {
    if (iter.hasNext) {
    Some(iter.reduceLeft(cleanF))
    } else {
    None
    }
    }
    var jobResult: Option[T] = None
    val mergeResult = (index: Int, taskResult: Option[T]) => {
    if (taskResult.isDefined) {
    jobResult = jobResult match {
    case Some(value) => Some(f(value, taskResult.get))
    case None => taskResult
    }
    }
    }
    sc.runJob(this, reducePartition, mergeResult)
    // Get the final result out of our Option, or throw an exception if the RDD was empty
    jobResult.getOrElse(throw new UnsupportedOperationException("empty collection"))
    }
    可见,这也是一个action操作。

    collect

    data: Array[Int] = Array(2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142, 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 166, 168, 170, 172, 174, 176, 178, 180, 182, 184, 186, 188, 190, 192, 194, 196, 198, 200)

    scala>

    collect源码

    /**
    * Return an array that contains all of the elements in this RDD.
    */
    def collect(): Array[T] = withScope {
    val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray)
    Array.concat(results: _*)
    }
    可见,这也是一个action操作。

     

      从收集结果的角度来说,如果想要在命令行终端中,看到执行结果,就必须collect。

       从源码的角度来说,凡是action级别的操作,都会触发sc.rubJob。这点,spark里是一个应用程序允许有多个Job,而hadoop里一个应用程序只能一个Job。

    count

    scala> numbers
    res2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:21

    scala> 1 to 100
    res3: scala.collection.immutable.Range.Inclusive = Range(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100)

    scala> numbers.count

    took 0.649005 s
    res4: Long = 100

    count源码 

    /**
    * Return the number of elements in the RDD.
    */
    def count(): Long = sc.runJob(this, Utils.getIteratorSize _).sum

    可见,这也是一个action操作。

    take

     

    scala> val topN = numbers.take(5)

    topN: Array[Int] = Array(1, 2, 3, 4, 5)

    take源码

     

    /**
    * Take the first num elements of the RDD. It works by first scanning one partition, and use the
    * results from that partition to estimate the number of additional partitions needed to satisfy
    * the limit.
    *
    * @note due to complications in the internal implementation, this method will raise
    * an exception if called on an RDD of `Nothing` or `Null`.
    */
    def take(num: Int): Array[T] = withScope {
    if (num == 0) {
    new Array[T](0)
    } else {
    val buf = new ArrayBuffer[T]
    val totalParts = this.partitions.length
    var partsScanned = 0
    while (buf.size < num && partsScanned < totalParts) {
    // The number of partitions to try in this iteration. It is ok for this number to be
    // greater than totalParts because we actually cap it at totalParts in runJob.
    var numPartsToTry = 1
    if (partsScanned > 0) {
    // If we didn't find any rows after the previous iteration, quadruple and retry.
    // Otherwise, interpolate the number of partitions we need to try, but overestimate
    // it by 50%. We also cap the estimation in the end.
    if (buf.size == 0) {
    numPartsToTry = partsScanned * 4
    } else {
    // the left side of max is >=1 whenever partsScanned >= 2
    numPartsToTry = Math.max((1.5 * num * partsScanned / buf.size).toInt - partsScanned, 1)
    numPartsToTry = Math.min(numPartsToTry, partsScanned * 4)
    }
    }

    val left = num - buf.size
    val p = partsScanned until math.min(partsScanned + numPartsToTry, totalParts)
    val res = sc.runJob(this, (it: Iterator[T]) => it.take(left).toArray, p)

    res.foreach(buf ++= _.take(num - buf.size))
    partsScanned += numPartsToTry
    }

    buf.toArray
    }
    }
    可见,这也是一个action操作。

    countByKey

     

    scala> val scores = Array(Tuple2(1,100),Tuple2(1,100),Tuple2(2,100),Tuple2(2,100),Tuple2(3,100))
    scores: Array[(Int, Int)] = Array((1,100), (1,100), (2,100), (2,100), (3,100))

    scala> val content = sc.parallelize
    <console>:21: error: missing arguments for method parallelize in class SparkContext;
    follow this method with `_' if you want to treat it as a partially applied function
    val content = sc.parallelize
    ^

    scala> val content = sc.parallelize(scores)
    content: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[0] at parallelize at <console>:23

    scala> val data = content.countByKey()

    took 10.556634 s
    data: scala.collection.Map[Int,Long] = Map(2 -> 2, 1 -> 2, 3 -> 1)

    countByKey源码

     

    /**
    * Count the number of elements for each key, collecting the results to a local Map.
    *
    * Note that this method should only be used if the resulting map is expected to be small, as
    * the whole thing is loaded into the driver's memory.
    * To handle very large results, consider using rdd.mapValues(_ => 1L).reduceByKey(_ + _), which
    * returns an RDD[T, Long] instead of a map.
    */
    def countByKey(): Map[K, Long] = self.withScope {
    self.mapValues(_ => 1L).reduceByKey(_ + _).collect().toMap
    }

    可见,这也是一个action操作。



    saveAsTextFile
    之前,在  rdd实战(rdd基本操作实战及transformation和action流程图)(源码)
    scala> val partitionsReadmeRdd =  sc.textFile("hdfs://SparkSingleNode:9000/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).saveAsTextFile("~/partition1README.txt")

    这里呢。

    scala> val partitionsReadmeRdd =  sc.textFile("/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).saveAsTextFile("/partition1README.txt")

    scala> val partitionsReadmeRdd =  sc.textFile("/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).saveAsTextFile("/partition1README.txt")

    saveAsTextFile源码

    /**
    * Save this RDD as a text file, using string representations of elements.
    */
    def saveAsTextFile(path: String): Unit = withScope {
    // https://issues.apache.org/jira/browse/SPARK-2075
    //
    // NullWritable is a `Comparable` in Hadoop 1.+, so the compiler cannot find an implicit
    // Ordering for it and will use the default `null`. However, it's a `Comparable[NullWritable]`
    // in Hadoop 2.+, so the compiler will call the implicit `Ordering.ordered` method to create an
    // Ordering for `NullWritable`. That's why the compiler will generate different anonymous
    // classes for `saveAsTextFile` in Hadoop 1.+ and Hadoop 2.+.
    //
    // Therefore, here we provide an explicit Ordering `null` to make sure the compiler generate
    // same bytecodes for `saveAsTextFile`.
    val nullWritableClassTag = implicitly[ClassTag[NullWritable]]
    val textClassTag = implicitly[ClassTag[Text]]
    val r = this.mapPartitions { iter =>
    val text = new Text()
    iter.map { x =>
    text.set(x.toString)
    (NullWritable.get(), text)
    }
    }
    RDD.rddToPairRDDFunctions(r)(nullWritableClassTag, textClassTag, null)
    .saveAsHadoopFile[TextOutputFormat[NullWritable, Text]](path)
    }

    /**
    * Save this RDD as a compressed text file, using string representations of elements.
    */
    def saveAsTextFile(path: String, codec: Class[_ <: CompressionCodec]): Unit = withScope {
    // https://issues.apache.org/jira/browse/SPARK-2075
    val nullWritableClassTag = implicitly[ClassTag[NullWritable]]
    val textClassTag = implicitly[ClassTag[Text]]
    val r = this.mapPartitions { iter =>
    val text = new Text()
    iter.map { x =>
    text.set(x.toString)
    (NullWritable.get(), text)
    }
    }
    RDD.rddToPairRDDFunctions(r)(nullWritableClassTag, textClassTag, null)
    .saveAsHadoopFile[TextOutputFormat[NullWritable, Text]](path, codec)
    }


    saveAsTextFile不仅,可保存在集群里,也可以保存到本地,这就要看hadoop的运行模式。
    由此可见,它也是个action操作。

    以上是rdd持久化的第一个方面,就是action级别的操作。
    rdd持久化的第二个方面,就是通过persist。
    为什么在spark里,随处可见
    persist的身影呢?
    原因一:spark在默认情况下,数据是放在内存中,适合高速迭代。比如在一个stage里,有1000个步骤,它其实只在第1个步骤输入数据,在第1000个步骤输出数据,在中间不产生临时数据。但是,分布式系统,分享非常高,所以,容出错,设计到容错。

        由于,rdd是有血统继承关系的,即lineager。如果后面的rdd数据分片出错了或rdd本身出错了,则,可根据其前面依赖的lineager,算出来。
    但是,假设1000个步骤,如果之前,没有父rdd进行
    persist或cache的话,则要重头开始了。亲!


    什么时候,该
    persist?
    1、在某个步骤非常费时的情况下,不好使                                    (手动
    2、计算链条特别长的情况下                                         
    手动
    3、checkpoint所在的rdd也一定要持久化数据      (注意:在checkpoint之前,进行persist)          手动
    checkpoint是rdd的算子,
      先写,某个具体rdd.checkpoint  或   某个具体rdd.cache ,再写,  某个具体rdd.persist
    4、shuffle之后   (因为shuffle之后,要网络传输,风险大)                          手动
    5、shuffle之前    (框架,默认给我们做的,把数据持久化到本地磁盘)



    checkpoint源码

    /**
    * Mark this RDD for checkpointing. It will be saved to a file inside the checkpoint
    * directory set with `SparkContext#setCheckpointDir` and all references to its parent
    * RDDs will be removed. This function must be called before any job has been
    * executed on this RDD. It is strongly recommended that this RDD is persisted in
    * memory, otherwise saving it on a file will require recomputation.
    */
    def checkpoint(): Unit = RDDCheckpointData.synchronized {
    // NOTE: we use a global lock here due to complexities downstream with ensuring
    // children RDD partitions point to the correct parent partitions. In the future
    // we should revisit this consideration.
    if (context.checkpointDir.isEmpty) {
    throw new SparkException("Checkpoint directory has not been set in the SparkContext")
    } else if (checkpointData.isEmpty) {
    checkpointData = Some(new ReliableRDDCheckpointData(this))
    }
    }



    persist源码
    /**
    * Mark this RDD for persisting using the specified level.
    *
    * @param newLevel the target storage level
    * @param allowOverride whether to override any existing level with the new one
    */
    private def persist(newLevel: StorageLevel, allowOverride: Boolean): this.type = {
    // TODO: Handle changes of StorageLevel
    if (storageLevel != StorageLevel.NONE && newLevel != storageLevel && !allowOverride) {
    throw new UnsupportedOperationException(
    "Cannot change storage level of an RDD after it was already assigned a level")
    }
    // If this is the first time this RDD is marked for persisting, register it
    // with the SparkContext for cleanups and accounting. Do this only once.
    if (storageLevel == StorageLevel.NONE) {
    sc.cleaner.foreach(_.registerRDDForCleanup(this))
    sc.persistRDD(this)
    }
    storageLevel = newLevel
    this
    }

    /**
    * Set this RDD's storage level to persist its values across operations after the first time
    * it is computed. This can only be used to assign a new storage level if the RDD does not
    * have a storage level set yet. Local checkpointing is an exception.
    */
    def persist(newLevel: StorageLevel): this.type = {
    if (isLocallyCheckpointed) {
    // This means the user previously called localCheckpoint(), which should have already
    // marked this RDD for persisting. Here we should override the old storage level with
    // one that is explicitly requested by the user (after adapting it to use disk).
    persist(LocalRDDCheckpointData.transformStorageLevel(newLevel), allowOverride = true)
    } else {
    persist(newLevel, allowOverride = false)
    }
    }

    /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
    def persist(): this.type = persist(StorageLevel.MEMORY_ONLY)

    /** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
    def cache(): this.type = persist()



    StorageLevel里有很多类型

    这里,牵扯到序列化。

    问,为什么要序列化?

    答:节省空间,减少体积。内存不够时,把MEMORY中的数据,进行序列化。

      当然,也有不好一面,序列化时,会反序列化,反序列化耗cpu。

    MEMORY_AND_DISK 
    假设,我们制定数据存储方式是,
    MEMORY_AND_DISK。则,是不是同时,存储到内存和磁盘呢?
    答:不是啊,亲。spark一定是优先考虑内存的啊,只要内存足够,不会考虑磁盘。若内存不够了,则才放部分数据到磁盘。

    极大地减少数据丢失概率发生。

    
    
    MEMORY_ONLY
    假设,我们制定数据存储方式是MEMORY_ONLY。则,只放到内存。当内存不够了,会出现OOM。或数据丢失。

    OFF_HEAP
    这牵扯到Tachyon,基于内存的分布式系统

    为什么有2分副本?好处是?

    假设,一个计算特别耗时,而且,又是基于内存,如果其中一份副本崩溃掉,则可迅速切换到另一份副本去计算。这就是“空间换时间”!非常重要
    这不是并行计算,这是计算后的结果,放2份副本。



    
    

    scala> val partitionsReadmeRdd = sc.textFile("/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).count

    took 6.270138 s

    scala> val partitionsReadmeRdd =  sc.textFile("/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).cache.count

    took 4.147545 s

    scala> val partitionsReadmeRdd = sc.textFile("/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).cache.count

    took 4.914212 s

     scala> val cacheRdd = sc.textFile("/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).cache

     scala> cacheRdd.count

     took 3.371621

     scala> val cacheRdd = sc.textFile("/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).cache

     scala> cacheRdd.count

     

    took 0.943499 s

    我的天啊!

     scala>  sc.textFile("/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).cache.count

     

    took 5.603903

     scala>  sc.textFile("/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).cache.count

     

    took 4.146627

    scala>  sc.textFile("/README.md").flatMap(_.split(" ")).map(word =>(word,1)).reduceByKey(_+_,1).cache.count

    took 3.071122

    cache之后,一定不能立即有其他算子!

    实际工程中, cache之后,如果有其他算子,则会,重新触发这个工作过程。

    注意:cache,不是action

     cache缓存,怎么让它失效?

    答:unpersist

    persist是lazy级别的,unpersist是eager级别的。cache是persist的一个特殊情况。

    cache和persist的区别?

    答:persist可以放到磁盘、放到内存、同时放到内存和磁盘。以及多份副本

      cache只能放到内存,以及只能一份副本。

    persisit在内存不够时,保存在磁盘的哪个目录?

    答:local的process。

    好的,以上是,rdd持久化的两个方面。

    rdd持久化的第一个方面,就是常用的action级别的操作。
    rdd持久化的第二个方面,就是持久化的不同方式,以及它内部的运行情况

      小知识:cache之后,一定不能立即有其他算子!实际工程中, cache之后,如果有其他算子,则会,重新触发这个工作过程。

     一般都不会跨机器抓内存,宁愿排队。宁愿数据不动代码动。

    2、广播

       为什么要有,rdd广播?

      答:大变量、join、冗余、减少数据移动、通信、状态、集群消息、共享、网络传输慢要提前、数据量大耗网络、减少通信、要同步。

       为什么大变量,需要广播呢?

       答:原因是,每个task运行,读取全集数据时,task本身执行时,每次都要拷贝一份数据副本,如果变量比较大,如一百万,则要拷贝一百万。

    (2)广播(线程中共享)不必每个task都拷贝一份副本,因为它是全局唯一的,极大的减少oom,减少通信,冗余、共享变量等。广播是将数据广播到Executor的内存中,其内部所以的任务都会只享有全局唯一的变量,减少网络传输。
            text在读取数据时候,拷贝一份的数据副本(变量),因为函数式编程(变量不变),不拷贝状态容易被改变,数据量小(1、引用较小2、数据本身小),变量大容易产生oom(task拷贝数据 在内存中运行),网络传输慢,要提前,冗余、共享,减少通信。
    广播变量:

    广播变量允许程序员将一个只读的变量缓存在每台机器上,而不用在任务之间传递变量。广播变量可被用于有效地给每个节点一个大输入数据集的副本。Spark还尝试使用高效地广播算法来分发变量,进而减少通信的开销。

    Spark的动作通过一系列的步骤执行,这些步骤由分布式的洗牌操作分开。Spark自动地广播每个步骤每个任务需要的通用数据。这些广播数据被序列化地缓存,在运行任务之前被反序列化出来。这意味着当我们需要在多个阶段的任务之间使用相同的数据,或者以反序列化形式缓存数据是十分重要的时候,显式地创建广播变量才有用。

    (本段摘自:http://blog.csdn.net/happyanger6/article/details/46576831

     

                                广播工作机制图 

                                 广播工作机制图 

    参考: http://blog.csdn.net/kxr0502/article/details/50574561

    问:读广播,会消耗网络传输吗?

    答:不消耗,广播是放在内存中。读取它,不消耗。

    问:广播变量是不是就是向每一个executor,广播一份数据,而不是向每一个task,广播一份数据?这样对吗?

    答:对

      广播是由Driver发给当前Application分配的所有Executor内存级别的全局只读变量,Executor中的线程池中的线程共享该全局变量,极大的减少了网络传输(否则的话每个Task都要传输一次该变量)并极大的节省了内存,当然也隐形的提高的CPU的有效工作。

     实战创建广播:

     

    scala> val number = 10
    number: Int = 10

    scala> val broadcastNumber = sc.broadcast(number)

    16/09/29 17:26:47 INFO storage.MemoryStore: ensureFreeSpace(40) called with curMem=1782734, maxMem=560497950
    16/09/29 17:26:47 INFO storage.MemoryStore: Block broadcast_38 stored as values in memory (estimated size 40.0 B, free 532.8 MB)
    16/09/29 17:26:48 INFO storage.MemoryStore: ensureFreeSpace(97) called with curMem=1782774, maxMem=560497950
    16/09/29 17:26:48 INFO storage.MemoryStore: Block broadcast_38_piece0 stored as bytes in memory (estimated size 97.0 B, free 532.8 MB)
    16/09/29 17:26:48 INFO storage.BlockManagerInfo: Added broadcast_38_piece0 in memory on 192.168.80.128:40914 (size: 97.0 B, free: 534.4 MB)
    16/09/29 17:26:48 INFO spark.SparkContext: Created broadcast 38 from broadcast at <console>:23
    broadcastNumber: org.apache.spark.broadcast.Broadcast[Int] = Broadcast(38)

    scala> val data = sc.parallelize
    <console>:21: error: missing arguments for method parallelize in class SparkContext;
    follow this method with `_' if you want to treat it as a partially applied function
    val data = sc.parallelize
    ^

    scala> val data = sc.parallelize(1 to 100)
    data: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[61] at parallelize at <console>:21

    scala> val bn = data.map(_* broadcastNumber.value)
    bn: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[62] at map at <console>:27

    scala>

      我们知道,是test是要广播变量,但,我们编程,对rdd。

    //通过在一个变量v上调用SparkContext.broadcast(v)可以创建广播变量。广播变量是围绕着v的封装,可以通过value方法访问这个变量。

    问:广播变量里有很多变量吗?

    答:当然可以有很多,用java bin或scala封装,就可以了。

      如,在这里。广播变量是,broadcastNumber, 里,有变量value等。

    scala> val broadcastNumber = sc.broadcast(number)

     scala> val bn = data.map(_* broadcastNumber.value) 

     

    scala> bn.collect

    res12: Array[Int] = Array(10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 640, 650, 660, 670, 680, 690, 700, 710, 720, 730, 740, 750, 760, 770, 780, 790, 800, 810, 820, 830, 840, 850, 860, 870, 880, 890, 900, 910, 920, 930, 940, 950, 960, 970, 980, 990, 1000)

    scala>

     由此,可见,通过机制、流程图和实战,深度剖析对广播全面详解!

    broadcast源码分析

     参考: http://www.cnblogs.com/seaspring/p/5682053.html

    BroadcastManager源码

    /*
    * Licensed to the Apache Software Foundation (ASF) under one or more
    * contributor license agreements. See the NOTICE file distributed with
    * this work for additional information regarding copyright ownership.
    * The ASF licenses this file to You under the Apache License, Version 2.0
    * (the "License"); you may not use this file except in compliance with
    * the License. You may obtain a copy of the License at
    *
    * http://www.apache.org/licenses/LICENSE-2.0
    *
    * Unless required by applicable law or agreed to in writing, software
    * distributed under the License is distributed on an "AS IS" BASIS,
    * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    * See the License for the specific language governing permissions and
    * limitations under the License.
    */

    package org.apache.spark.broadcast

    import java.util.concurrent.atomic.AtomicLong

    import scala.reflect.ClassTag

    import org.apache.spark._
    import org.apache.spark.util.Utils

    private[spark] class BroadcastManager(
    val isDriver: Boolean,
    conf: SparkConf,
    securityManager: SecurityManager)
    extends Logging {

    private var initialized = false
    private var broadcastFactory: BroadcastFactory = null

    initialize()

    // Called by SparkContext or Executor before using Broadcast
    private def initialize() {
    synchronized {
    if (!initialized) {
    val broadcastFactoryClass =
    conf.get("spark.broadcast.factory", "org.apache.spark.broadcast.TorrentBroadcastFactory")

    broadcastFactory =
    Utils.classForName(broadcastFactoryClass).newInstance.asInstanceOf[BroadcastFactory]

    // Initialize appropriate BroadcastFactory and BroadcastObject
    broadcastFactory.initialize(isDriver, conf, securityManager)

    initialized = true
    }
    }
    }

    def stop() {
    broadcastFactory.stop()
    }

    private val nextBroadcastId = new AtomicLong(0)

    def newBroadcast[T: ClassTag](value_ : T, isLocal: Boolean): Broadcast[T] = {
    broadcastFactory.newBroadcast[T](value_, isLocal, nextBroadcastId.getAndIncrement())
    }

    def unbroadcast(id: Long, removeFromDriver: Boolean, blocking: Boolean) {
    broadcastFactory.unbroadcast(id, removeFromDriver, blocking)
    }
    }


    Broadcast源码

    /*
    * Licensed to the Apache Software Foundation (ASF) under one or more
    * contributor license agreements. See the NOTICE file distributed with
    * this work for additional information regarding copyright ownership.
    * The ASF licenses this file to You under the Apache License, Version 2.0
    * (the "License"); you may not use this file except in compliance with
    * the License. You may obtain a copy of the License at
    *
    * http://www.apache.org/licenses/LICENSE-2.0
    *
    * Unless required by applicable law or agreed to in writing, software
    * distributed under the License is distributed on an "AS IS" BASIS,
    * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    * See the License for the specific language governing permissions and
    * limitations under the License.
    */

    package org.apache.spark.broadcast

    import java.io.Serializable

    import org.apache.spark.SparkException
    import org.apache.spark.Logging
    import org.apache.spark.util.Utils

    import scala.reflect.ClassTag

    /**
    * A broadcast variable. Broadcast variables allow the programmer to keep a read-only variable
    * cached on each machine rather than shipping a copy of it with tasks. They can be used, for
    * example, to give every node a copy of a large input dataset in an efficient manner. Spark also
    * attempts to distribute broadcast variables using efficient broadcast algorithms to reduce
    * communication cost.
    *
    * Broadcast variables are created from a variable `v` by calling
    * [[org.apache.spark.SparkContext#broadcast]].
    * The broadcast variable is a wrapper around `v`, and its value can be accessed by calling the
    * `value` method. The interpreter session below shows this:
    *
    * {{{
    * scala> val broadcastVar = sc.broadcast(Array(1, 2, 3))
    * broadcastVar: org.apache.spark.broadcast.Broadcast[Array[Int]] = Broadcast(0)
    *
    * scala> broadcastVar.value
    * res0: Array[Int] = Array(1, 2, 3)
    * }}}
    *
    * After the broadcast variable is created, it should be used instead of the value `v` in any
    * functions run on the cluster so that `v` is not shipped to the nodes more than once.
    * In addition, the object `v` should not be modified after it is broadcast in order to ensure
    * that all nodes get the same value of the broadcast variable (e.g. if the variable is shipped
    * to a new node later).
    *
    * @param id A unique identifier for the broadcast variable.
    * @tparam T Type of the data contained in the broadcast variable.
    */
    abstract class Broadcast[T: ClassTag](val id: Long) extends Serializable with Logging {

    /**
    * Flag signifying whether the broadcast variable is valid
    * (that is, not already destroyed) or not.
    */
    @volatile private var _isValid = true

    private var _destroySite = ""

    /** Get the broadcasted value. */
    def value: T = {
    assertValid()
    getValue()
    }

    /**
    * Asynchronously delete cached copies of this broadcast on the executors.
    * If the broadcast is used after this is called, it will need to be re-sent to each executor.
    */
    def unpersist() {
    unpersist(blocking = false)
    }

    /**
    * Delete cached copies of this broadcast on the executors. If the broadcast is used after
    * this is called, it will need to be re-sent to each executor.
    * @param blocking Whether to block until unpersisting has completed
    */
    def unpersist(blocking: Boolean) {
    assertValid()
    doUnpersist(blocking)
    }


    /**
    * Destroy all data and metadata related to this broadcast variable. Use this with caution;
    * once a broadcast variable has been destroyed, it cannot be used again.
    * This method blocks until destroy has completed
    */
    def destroy() {
    destroy(blocking = true)
    }

    /**
    * Destroy all data and metadata related to this broadcast variable. Use this with caution;
    * once a broadcast variable has been destroyed, it cannot be used again.
    * @param blocking Whether to block until destroy has completed
    */
    private[spark] def destroy(blocking: Boolean) {
    assertValid()
    _isValid = false
    _destroySite = Utils.getCallSite().shortForm
    logInfo("Destroying %s (from %s)".format(toString, _destroySite))
    doDestroy(blocking)
    }

    /**
    * Whether this Broadcast is actually usable. This should be false once persisted state is
    * removed from the driver.
    */
    private[spark] def isValid: Boolean = {
    _isValid
    }

    /**
    * Actually get the broadcasted value. Concrete implementations of Broadcast class must
    * define their own way to get the value.
    */
    protected def getValue(): T

    /**
    * Actually unpersist the broadcasted value on the executors. Concrete implementations of
    * Broadcast class must define their own logic to unpersist their own data.
    */
    protected def doUnpersist(blocking: Boolean)

    /**
    * Actually destroy all data and metadata related to this broadcast variable.
    * Implementation of Broadcast class must define their own logic to destroy their own
    * state.
    */
    protected def doDestroy(blocking: Boolean)

    /** Check if this broadcast is valid. If not valid, exception is thrown. */
    protected def assertValid() {
    if (!_isValid) {
    throw new SparkException(
    "Attempted to use %s after it was destroyed (%s) ".format(toString, _destroySite))
    }
    }

    override def toString: String = "Broadcast(" + id + ")"
    }

     其他的,不一一赘述了。



     3、累加器

       为什么需要,累加器?

       答:第一种情况,是,test把数据副本运行起来。

              第二种情况,有全局变量和局部变量,有了广播,为什么还需要累加器?

    (3)累加器(获取全局唯一的状态对象,SparkContext创建,被Driver控制,在Text实际运行的时候,每次都可以保证修改之后获取全局唯一的对象,Driver中可读,Executor可读)

            累加器是仅仅被相关操作累加的变量,因此可以在并行中被有效地支持。它可以被用来实现计数器和总和。Spark原生地只支持数字类型的累加器,编程者可以添加新类型的支持。如果创建累加器时指定了名字,可以在Spark的UI界面看到。这有利于理解每个执行阶段的进程。(对于python还不支持)

            累加器通过对一个初始化了的变量v调用SparkContext.accumulator(v)来创建。在集群上运行的任务可以通过add或者"+="方法在累加器上进行累加操作。但是,它们不能读取它的值。只有驱动程序能够读取它的值,通过累加器的value方法。

       累加器的特征:全局的,Accumulator:对于Executor只能修改但不可读,只对Driver可读(因为通过Driver控制整个集群的状态),不同的executor 修改,不会彼此覆盖(枷锁机制)

       

     累加器实战:

     

    scala> val sum = sc.accumulator(0)
    sum: org.apache.spark.Accumulator[Int] = 0

    scala> val data = sc.parallelize(1 to 100)
    data: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[63] at parallelize at <console>:21

    scala> val result = data.foreach(item =>sum += item)

    took 6.548568 s
    result: Unit = ()

    scala> println(sum)
    5050

    累加器 在记录集群全局唯一的状态的时候极其重要,保持唯一的全局状态的变量,所以其重要性不言而喻。
    Driver中取值,Executor中计算,
    1、累计器全局(全集群)唯一,只增不减(Executor中的task去修改,即累加);
    2、累加器是Executor共享;
    我的理解应该是对的,集群全局变量,谁操作,从driver上拿去操作,然后下个Executor在用的时候,拿上个Executor执行的结果,也就是从Driver那里拿。
     

     accumulator源码

    /*
    * Licensed to the Apache Software Foundation (ASF) under one or more
    * contributor license agreements. See the NOTICE file distributed with
    * this work for additional information regarding copyright ownership.
    * The ASF licenses this file to You under the Apache License, Version 2.0
    * (the "License"); you may not use this file except in compliance with
    * the License. You may obtain a copy of the License at
    *
    * http://www.apache.org/licenses/LICENSE-2.0
    *
    * Unless required by applicable law or agreed to in writing, software
    * distributed under the License is distributed on an "AS IS" BASIS,
    * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    * See the License for the specific language governing permissions and
    * limitations under the License.
    */

    package org.apache.spark

    import java.io.{ObjectInputStream, Serializable}

    import scala.collection.generic.Growable
    import scala.collection.Map
    import scala.collection.mutable
    import scala.ref.WeakReference
    import scala.reflect.ClassTag

    import org.apache.spark.serializer.JavaSerializer
    import org.apache.spark.util.Utils

    /**
    * A data type that can be accumulated, ie has an commutative and associative "add" operation,
    * but where the result type, `R`, may be different from the element type being added, `T`.
    *
    * You must define how to add data, and how to merge two of these together. For some data types,
    * such as a counter, these might be the same operation. In that case, you can use the simpler
    * [[org.apache.spark.Accumulator]]. They won't always be the same, though -- e.g., imagine you are
    * accumulating a set. You will add items to the set, and you will union two sets together.
    *
    * @param initialValue initial value of accumulator
    * @param param helper object defining how to add elements of type `R` and `T`
    * @param name human-readable name for use in Spark's web UI
    * @param internal if this [[Accumulable]] is internal. Internal [[Accumulable]]s will be reported
    * to the driver via heartbeats. For internal [[Accumulable]]s, `R` must be
    * thread safe so that they can be reported correctly.
    * @tparam R the full accumulated data (result type)
    * @tparam T partial data that can be added in
    */
    class Accumulable[R, T] private[spark] (
    @transient initialValue: R,
    param: AccumulableParam[R, T],
    val name: Option[String],
    internal: Boolean)
    extends Serializable {

    private[spark] def this(
    @transient initialValue: R, param: AccumulableParam[R, T], internal: Boolean) = {
    this(initialValue, param, None, internal)
    }

    def this(@transient initialValue: R, param: AccumulableParam[R, T], name: Option[String]) =
    this(initialValue, param, name, false)

    def this(@transient initialValue: R, param: AccumulableParam[R, T]) =
    this(initialValue, param, None)

    val id: Long = Accumulators.newId

    @volatile @transient private var value_ : R = initialValue // Current value on master
    val zero = param.zero(initialValue) // Zero value to be passed to workers
    private var deserialized = false

    Accumulators.register(this)

    /**
    * If this [[Accumulable]] is internal. Internal [[Accumulable]]s will be reported to the driver
    * via heartbeats. For internal [[Accumulable]]s, `R` must be thread safe so that they can be
    * reported correctly.
    */
    private[spark] def isInternal: Boolean = internal

    /**
    * Add more data to this accumulator / accumulable
    * @param term the data to add
    */
    def += (term: T) { value_ = param.addAccumulator(value_, term) }

    /**
    * Add more data to this accumulator / accumulable
    * @param term the data to add
    */
    def add(term: T) { value_ = param.addAccumulator(value_, term) }

    /**
    * Merge two accumulable objects together
    *
    * Normally, a user will not want to use this version, but will instead call `+=`.
    * @param term the other `R` that will get merged with this
    */
    def ++= (term: R) { value_ = param.addInPlace(value_, term)}

    /**
    * Merge two accumulable objects together
    *
    * Normally, a user will not want to use this version, but will instead call `add`.
    * @param term the other `R` that will get merged with this
    */
    def merge(term: R) { value_ = param.addInPlace(value_, term)}

    /**
    * Access the accumulator's current value; only allowed on master.
    */
    def value: R = {
    if (!deserialized) {
    value_
    } else {
    throw new UnsupportedOperationException("Can't read accumulator value in task")
    }
    }

    /**
    * Get the current value of this accumulator from within a task.
    *
    * This is NOT the global value of the accumulator. To get the global value after a
    * completed operation on the dataset, call `value`.
    *
    * The typical use of this method is to directly mutate the local value, eg., to add
    * an element to a Set.
    */
    def localValue: R = value_

    /**
    * Set the accumulator's value; only allowed on master.
    */
    def value_= (newValue: R) {
    if (!deserialized) {
    value_ = newValue
    } else {
    throw new UnsupportedOperationException("Can't assign accumulator value in task")
    }
    }

    /**
    * Set the accumulator's value; only allowed on master
    */
    def setValue(newValue: R) {
    this.value = newValue
    }

    // Called by Java when deserializing an object
    private def readObject(in: ObjectInputStream): Unit = Utils.tryOrIOException {
    in.defaultReadObject()
    value_ = zero
    deserialized = true
    // Automatically register the accumulator when it is deserialized with the task closure.
    //
    // Note internal accumulators sent with task are deserialized before the TaskContext is created
    // and are registered in the TaskContext constructor. Other internal accumulators, such SQL
    // metrics, still need to register here.
    val taskContext = TaskContext.get()
    if (taskContext != null) {
    taskContext.registerAccumulator(this)
    }
    }

    override def toString: String = if (value_ == null) "null" else value_.toString
    }

    /**
    * Helper object defining how to accumulate values of a particular type. An implicit
    * AccumulableParam needs to be available when you create [[Accumulable]]s of a specific type.
    *
    * @tparam R the full accumulated data (result type)
    * @tparam T partial data that can be added in
    */
    trait AccumulableParam[R, T] extends Serializable {
    /**
    * Add additional data to the accumulator value. Is allowed to modify and return `r`
    * for efficiency (to avoid allocating objects).
    *
    * @param r the current value of the accumulator
    * @param t the data to be added to the accumulator
    * @return the new value of the accumulator
    */
    def addAccumulator(r: R, t: T): R

    /**
    * Merge two accumulated values together. Is allowed to modify and return the first value
    * for efficiency (to avoid allocating objects).
    *
    * @param r1 one set of accumulated data
    * @param r2 another set of accumulated data
    * @return both data sets merged together
    */
    def addInPlace(r1: R, r2: R): R

    /**
    * Return the "zero" (identity) value for an accumulator type, given its initial value. For
    * example, if R was a vector of N dimensions, this would return a vector of N zeroes.
    */
    def zero(initialValue: R): R
    }

    private[spark] class
    GrowableAccumulableParam[R <% Growable[T] with TraversableOnce[T] with Serializable: ClassTag, T]
    extends AccumulableParam[R, T] {

    def addAccumulator(growable: R, elem: T): R = {
    growable += elem
    growable
    }

    def addInPlace(t1: R, t2: R): R = {
    t1 ++= t2
    t1
    }

    def zero(initialValue: R): R = {
    // We need to clone initialValue, but it's hard to specify that R should also be Cloneable.
    // Instead we'll serialize it to a buffer and load it back.
    val ser = new JavaSerializer(new SparkConf(false)).newInstance()
    val copy = ser.deserialize[R](ser.serialize(initialValue))
    copy.clear() // In case it contained stuff
    copy
    }
    }

    /**
    * A simpler value of [[Accumulable]] where the result type being accumulated is the same
    * as the types of elements being merged, i.e. variables that are only "added" to through an
    * associative operation and can therefore be efficiently supported in parallel. They can be used
    * to implement counters (as in MapReduce) or sums. Spark natively supports accumulators of numeric
    * value types, and programmers can add support for new types.
    *
    * An accumulator is created from an initial value `v` by calling [[SparkContext#accumulator]].
    * Tasks running on the cluster can then add to it using the [[Accumulable#+=]] operator.
    * However, they cannot read its value. Only the driver program can read the accumulator's value,
    * using its value method.
    *
    * The interpreter session below shows an accumulator being used to add up the elements of an array:
    *
    * {{{
    * scala> val accum = sc.accumulator(0)
    * accum: spark.Accumulator[Int] = 0
    *
    * scala> sc.parallelize(Array(1, 2, 3, 4)).foreach(x => accum += x)
    * ...
    * 10/09/29 18:41:08 INFO SparkContext: Tasks finished in 0.317106 s
    *
    * scala> accum.value
    * res2: Int = 10
    * }}}
    *
    * @param initialValue initial value of accumulator
    * @param param helper object defining how to add elements of type `T`
    * @tparam T result type
    */
    class Accumulator[T] private[spark] (
    @transient private[spark] val initialValue: T,
    param: AccumulatorParam[T],
    name: Option[String],
    internal: Boolean)
    extends Accumulable[T, T](initialValue, param, name, internal) {

    def this(initialValue: T, param: AccumulatorParam[T], name: Option[String]) = {
    this(initialValue, param, name, false)
    }

    def this(initialValue: T, param: AccumulatorParam[T]) = {
    this(initialValue, param, None, false)
    }
    }

    /**
    * A simpler version of [[org.apache.spark.AccumulableParam]] where the only data type you can add
    * in is the same type as the accumulated value. An implicit AccumulatorParam object needs to be
    * available when you create Accumulators of a specific type.
    *
    * @tparam T type of value to accumulate
    */
    trait AccumulatorParam[T] extends AccumulableParam[T, T] {
    def addAccumulator(t1: T, t2: T): T = {
    addInPlace(t1, t2)
    }
    }

    object AccumulatorParam {

    // The following implicit objects were in SparkContext before 1.2 and users had to
    // `import SparkContext._` to enable them. Now we move them here to make the compiler find
    // them automatically. However, as there are duplicate codes in SparkContext for backward
    // compatibility, please update them accordingly if you modify the following implicit objects.

    implicit object DoubleAccumulatorParam extends AccumulatorParam[Double] {
    def addInPlace(t1: Double, t2: Double): Double = t1 + t2
    def zero(initialValue: Double): Double = 0.0
    }

    implicit object IntAccumulatorParam extends AccumulatorParam[Int] {
    def addInPlace(t1: Int, t2: Int): Int = t1 + t2
    def zero(initialValue: Int): Int = 0
    }

    implicit object LongAccumulatorParam extends AccumulatorParam[Long] {
    def addInPlace(t1: Long, t2: Long): Long = t1 + t2
    def zero(initialValue: Long): Long = 0L
    }

    implicit object FloatAccumulatorParam extends AccumulatorParam[Float] {
    def addInPlace(t1: Float, t2: Float): Float = t1 + t2
    def zero(initialValue: Float): Float = 0f
    }

    // TODO: Add AccumulatorParams for other types, e.g. lists and strings
    }

    // TODO: The multi-thread support in accumulators is kind of lame; check
    // if there's a more intuitive way of doing it right
    private[spark] object Accumulators extends Logging {
    /**
    * This global map holds the original accumulator objects that are created on the driver.
    * It keeps weak references to these objects so that accumulators can be garbage-collected
    * once the RDDs and user-code that reference them are cleaned up.
    */
    val originals = mutable.Map[Long, WeakReference[Accumulable[_, _]]]()

    private var lastId: Long = 0

    def newId(): Long = synchronized {
    lastId += 1
    lastId
    }

    def register(a: Accumulable[_, _]): Unit = synchronized {
    originals(a.id) = new WeakReference[Accumulable[_, _]](a)
    }

    def remove(accId: Long) {
    synchronized {
    originals.remove(accId)
    }
    }

    // Add values to the original accumulators with some given IDs
    def add(values: Map[Long, Any]): Unit = synchronized {
    for ((id, value) <- values) {
    if (originals.contains(id)) {
    // Since we are now storing weak references, we must check whether the underlying data
    // is valid.
    originals(id).get match {
    case Some(accum) => accum.asInstanceOf[Accumulable[Any, Any]] ++= value
    case None =>
    throw new IllegalAccessError("Attempted to access garbage collected Accumulator.")
    }
    } else {
    logWarning(s"Ignoring accumulator update for unknown accumulator id $id")
    }
    }
    }

    }

    private[spark] object InternalAccumulator {
    val PEAK_EXECUTION_MEMORY = "peakExecutionMemory"
    val TEST_ACCUMULATOR = "testAccumulator"

    // For testing only.
    // This needs to be a def since we don't want to reuse the same accumulator across stages.
    private def maybeTestAccumulator: Option[Accumulator[Long]] = {
    if (sys.props.contains("spark.testing")) {
    Some(new Accumulator(
    0L, AccumulatorParam.LongAccumulatorParam, Some(TEST_ACCUMULATOR), internal = true))
    } else {
    None
    }
    }

    /**
    * Accumulators for tracking internal metrics.
    *
    * These accumulators are created with the stage such that all tasks in the stage will
    * add to the same set of accumulators. We do this to report the distribution of accumulator
    * values across all tasks within each stage.
    */
    def create(sc: SparkContext): Seq[Accumulator[Long]] = {
    val internalAccumulators = Seq(
    // Execution memory refers to the memory used by internal data structures created
    // during shuffles, aggregations and joins. The value of this accumulator should be
    // approximately the sum of the peak sizes across all such data structures created
    // in this task. For SQL jobs, this only tracks all unsafe operators and ExternalSort.
    new Accumulator(
    0L, AccumulatorParam.LongAccumulatorParam, Some(PEAK_EXECUTION_MEMORY), internal = true)
    ) ++ maybeTestAccumulator.toSeq
    internalAccumulators.foreach { accumulator =>
    sc.cleaner.foreach(_.registerAccumulatorForCleanup(accumulator))
    }
    internalAccumulators
    }
    }

    参考

    王家林老师是大数据技术集大成者,中国Spark第一人:

    DT大数据梦工厂

    新浪微博:www.weibo.com/ilovepains/

    微信公众号:DT_Spark

    博客:http://.blog.sina.com.cn/ilovepains

    TEL:18610086859

    Email:18610086859@vip.126.com

    参考链接:

    http://blog.csdn.net/kxr0502/article/details/50574561

    http://blog.csdn.net/happyanger6/article/details/46576831

    http://blog.csdn.net/happyanger6/article/details/46552823

  • 相关阅读:
    DirectShow基础编程 源Filter CSource CSourceStream (转)
    9.1 4*4矩阵键盘驱动
    实验8 #第8章 Verilog有限状态机设计-2 #Verilog #Quartus #modelsim
    实验8 #第8章 Verilog有限状态机设计-3 #Verilog #Quartus #modelsim
    实验8 #第8章 Verilog有限状态机设计-1 #Verilog #Quartus #modelsim
    习题8 #第8章 Verilog有限状态机设计-4 #Verilog #Quartus #modelsim
    习题8 #第8章 Verilog有限状态机设计-3 #Verilog #Quartus #modelsim
    习题8 #第8章 Verilog有限状态机设计-2 #Verilog #Quartus #modelsim
    习题8 #第8章 Verilog有限状态机设计-1 #Verilog #Quartus #modelsim
    Multisim 14.0 安装教程
  • 原文地址:https://www.cnblogs.com/zlslch/p/5914696.html
Copyright © 2011-2022 走看看