/* * 279. Perfect Squares * 2016-6-26 by Mingyang * 同样的道理,这里的options就是所有比自己小的perfect square * numbers dp[n] indicates that the perfect squares count of the given n, * and we have: * dp[0] = 0 * dp[1] = dp[0]+1 = 1 * dp[2] = dp[1]+1 = 2 * dp[3] =dp[2]+1 = 3 * dp[4] = Min{ dp[4-1*1]+1, dp[4-2*2]+1 } * = Min{ dp[3]+1,dp[0]+1 } * = 1 * dp[5] = Min{ dp[5-1*1]+1, dp[5-2*2]+1 } * = Min{ dp[4]+1,dp[1]+1 } * = 2 * dp[13] = Min{ dp[13-1*1]+1, dp[13-2*2]+1,dp[13-3*3]+1 } * = Min{ dp[12]+1, dp[9]+1, dp[4]+1 } * = 2 * dp[n] = Min{dp[n - i*i] + 1 }, n - i*i >=0 && i >= 1 */ public int numSquares(int n) { int sq=0; int[] dp=new int[n+1]; dp[0]=0; dp[1]=1; for(int i=2;i<=n;i++) { dp[i]=i; for(int j=1;j*j<=i;j++) { dp[i]=Math.min(dp[i],dp[i-j*j]+1); } } return dp[n]; }