zoukankan      html  css  js  c++  java
  • hdu 1299 整数分解 + map 质因子以及个数

    题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=1299

    Diophantus of Alexandria

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 2149    Accepted Submission(s): 813


    Problem Description
    Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first mathematicians to study equations where variables were restricted to integral values. In honor of him, these equations are commonly called diophantine equations. One of the most famous diophantine equation is x^n + y^n = z^n. Fermat suggested that for n > 2, there are no solutions with positive integral values for x, y and z. A proof of this theorem (called Fermat's last theorem) was found only recently by Andrew Wiles.

    Consider the following diophantine equation: 

    1 / x + 1 / y = 1 / n where x, y, n ∈ N+ (1)


    Diophantus is interested in the following question: for a given n, how many distinct solutions (i. e., solutions satisfying x ≤ y) does equation (1) have? For example, for n = 4, there are exactly three distinct solutions: 

    1 / 5 + 1 / 20 = 1 / 4
    1 / 6 + 1 / 12 = 1 / 4
    1 / 8 + 1 / 8 = 1 / 4



    Clearly, enumerating these solutions can become tedious for bigger values of n. Can you help Diophantus compute the number of distinct solutions for big values of n quickly?
     
    Input
    The first line contains the number of scenarios. Each scenario consists of one line containing a single number n (1 ≤ n ≤ 10^9). 
     
    Output
    The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Next, print a single line with the number of distinct solutions of equation (1) for the given value of n. Terminate each scenario with a blank line. 
     
    Sample Input
    2
    4
    1260
     
    Sample Output
    Scenario #1:
    3
     
     
    Scenario #2:
    113

     分析 :

    1/x + 1/y =1/n   

    n 10^9

    x> n y>n ,令 y= n+k  , 则 x = n*n/ k + n , 故需要找出满足 n*n /k 为整数的对数。(k  ,  n*n/k) , 

    命题: n = p1 ^ r1 * p2 ^ r2 …… pk ^ rk  ,  则 n 个因子个数为 ans = (r1 +1)*( r2 +1)* …… *(rk +1)

    n * n  的 因子个数为 ans2 = (2*r1 +1)*( 2*r2 +1)* …… *(2* rk +1)

    可以 组成的 整数对 (k  ,  n* n /k)  共有 ans2 /2 +1  (k=n 时是一种 ,  其他 重复一次)

    代码如下:

    #include<iostream>
    #include<stdlib.h>
    #include<stdio.h>
    #include<math.h>
    #include<string.h>
    #include<string>
    #include<queue>
    #include<algorithm>
    #include<map>
    using namespace std;
    map<int ,int >factor; //
    map<int ,int >::iterator it;
    void Prime(int n)
    {
        int i,num;
        for(i=2;i*i <= n;i++)
        {
            if(n %i ==0)
            {
                num=0;
                while(n%i == 0)
                {
                    num++;
                    n/=i;
                }
                factor[i]=num;  //记录以i为因子的个数
            }
    
        }
        if(n!=1)
            factor[n]=1;
    }
    
    int main()
    {
        int t,k=0,n,ans;
        cin>>t;
        while(t--)
        {
            ans=1;
            factor.clear();
            cin>>n;
            printf("Scenario #%d:
    ",++k);
            Prime(n);
            for(it=factor.begin(); it!= factor.end(); it++)
            {
                ans*=(2*it->second + 1);
            }
            printf("%d
    
    ", ans/2+1);
        }
        return 0;
    }
  • 相关阅读:
    定制专属于你的系统安装镜像
    COBBLER无人值守安装
    KICKSTART无人值守安装
    关系型数据库与非关系型数据库的区别
    MooseFS 分布式存储
    GlusterFS 存储
    Crush 算法以及PG和PGP调整经验
    对象存储、块存储、文件存储的差异
    Ceph 概述和理论
    Go之gob包的使用
  • 原文地址:https://www.cnblogs.com/zn505119020/p/3592776.html
Copyright © 2011-2022 走看看