zoukankan      html  css  js  c++  java
  • 源码分析——迁移学习Inception V3网络重训练实现图片分类

    1. 前言

    近些年来,随着以卷积神经网络(CNN)为代表的深度学习在图像识别领域的突破,越来越多的图像识别算法不断涌现。在去年,我们初步成功尝试了图像识别在测试领域的应用:将网站样式错乱问题、无线领域机型适配问题转换为“特定场景下的正常图片和异常图片的二分类问题”,并借助Goolge开源的Inception V3网络进行迁移学习,重训练出对应场景下的图片分类模型,问题图片的准确率达到95%以上。

    过去一年,我们在图片智能识别做的主要工作包括:

    • 模型的落地和参数调优
    • 模型的服务化
    • 模型服务的优化(包括数据库连接池的引入、gunicorn容器的引入、docker化等)

    本篇文章主要是对模型重训练的源码进行学习和分析,加深对模型训练过程的理解,以便后续在对模型训练过程进行调整时有的放矢。

    这边对迁移学习做个简单解释:图像识别往往包含数以百万计的参数,从头训练需要大量打好标签的图片,还需要大量的计算力(往往数百小时的GPU时间)。对此,迁移学习是一个捷径,它可以在已经训练好的相似工作模型基础上,继续训练新的模型。

    2. retrain.py源码分析

    目前我们使用的图像智能服务,对于迁移学习的代码,是参考的开源代码 github: tensorflow/hub/image_retraining/retrain.py

    下面是对源码的学习和解读:

    2.1 执行主入口main:

    if __name__ == '__main__':
      parser = argparse.ArgumentParser()
      parser.add_argument(
          '--image_dir',
          type=str,
          default='',
          help='Path to folders of labeled images.'
      )
      parser.add_argument(
          '--output_graph',
          type=str,
          default='/tmp/output_graph.pb',
          help='Where to save the trained graph.'
      )
      ......省略......
      parser.add_argument(
          '--logging_verbosity',
          type=str,
          default='INFO',
          choices=['DEBUG', 'INFO', 'WARN', 'ERROR', 'FATAL'],
          help='How much logging output should be produced.')
      FLAGS, unparsed = parser.parse_known_args()
      tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)
    
    

    可以看到,程序main入口主要是对输入参数的声明和解析,实际执行时传入的参数会存入到FLAGS变量中,然后执行 tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)开始正式训练。

    2.2 main(_)方法

    def main(_):
      # Needed to make sure the logging output is visible.
      # See https://github.com/tensorflow/tensorflow/issues/3047
      
      ## 设置log级别
      logging_verbosity = logging_level_verbosity(FLAGS.logging_verbosity)
      tf.logging.set_verbosity(logging_verbosity)
    
      ## 判断image_dir参数是否传入,该参数表示用于训练的图片集路径
      if not FLAGS.image_dir:
        tf.logging.error('Must set flag --image_dir.')
        return -1
    
      # Prepare necessary directories that can be used during training
      ## 重建summaries_dir,并确保intermediate_output_graphs_dir存在
      prepare_file_system()
    
      # Look at the folder structure, and create lists of all the images.
      ## 根据输入的图片集路径、测试图片占比、验证图片占比来划分输入的图集,将图集划分为训练集、测试集、验证集
      image_lists = create_image_lists(FLAGS.image_dir, FLAGS.testing_percentage,
                                       FLAGS.validation_percentage)
                       
      ## 根据image_dir下的子目录个数,判断要分类的数量。每个子目录为一个类别,每个类别会各自分为训练集、测试集、验证集。如果类别数为0或1,则返回错误,因为分类问题至少要有2个类。
      class_count = len(image_lists.keys())
      if class_count == 0:
        tf.logging.error('No valid folders of images found at ' + FLAGS.image_dir)
        return -1
      if class_count == 1:
        tf.logging.error('Only one valid folder of images found at ' +
                         FLAGS.image_dir +
                         ' - multiple classes are needed for classification.')
        return -1
    
      # See if the command-line flags mean we're applying any distortions.
      ## 根据传入的参数判断是否要对图片进行一些调整
      do_distort_images = should_distort_images(
          FLAGS.flip_left_right, FLAGS.random_crop, FLAGS.random_scale,
          FLAGS.random_brightness)
    
      # Set up the pre-trained graph.
      ## 载入module,默认使用inception v3,可以用参数--tfhub_module调整为使用其他已训练的模型
      module_spec = hub.load_module_spec(FLAGS.tfhub_module)
      ## 创建模型图graph
      graph, bottleneck_tensor, resized_image_tensor, wants_quantization = (
          create_module_graph(module_spec))
    
      # Add the new layer that we'll be training.
      ## 调用add_final_retrain_ops方法获得训练步骤、交叉熵、瓶颈输入、真实的输入、最终的tensor
      with graph.as_default():
        (train_step, cross_entropy, bottleneck_input,
         ground_truth_input, final_tensor) = add_final_retrain_ops(
             class_count, FLAGS.final_tensor_name, bottleneck_tensor,
             wants_quantization, is_training=True)
    
      with tf.Session(graph=graph) as sess:
        # Initialize all weights: for the module to their pretrained values,
        # and for the newly added retraining layer to random initial values.
        ## 初始化变量
        init = tf.global_variables_initializer()
        sess.run(init)
    
        # Set up the image decoding sub-graph.
        ## 调用图片解码操作的函数获得输入的图片tensor和解码后的图片tensor
        jpeg_data_tensor, decoded_image_tensor = add_jpeg_decoding(module_spec)
      
        if do_distort_images:
          # We will be applying distortions, so set up the operations we'll need.
          (distorted_jpeg_data_tensor,
           distorted_image_tensor) = add_input_distortions(
               FLAGS.flip_left_right, FLAGS.random_crop, FLAGS.random_scale,
               FLAGS.random_brightness, module_spec)
        else:
          # We'll make sure we've calculated the 'bottleneck' image summaries and
          # cached them on disk.
          ## 创建各个image的bottlenecks,并缓存到磁盘disk
          cache_bottlenecks(sess, image_lists, FLAGS.image_dir,
                            FLAGS.bottleneck_dir, jpeg_data_tensor,
                            decoded_image_tensor, resized_image_tensor,
                            bottleneck_tensor, FLAGS.tfhub_module)
    
        # Create the operations we need to evaluate the accuracy of our new layer.
        ## 创建评估的operation
        evaluation_step, _ = add_evaluation_step(final_tensor, ground_truth_input)
    
        # Merge all the summaries and write them out to the summaries_dir
        ## 将summary merge并写到summaries_dir目录下
        merged = tf.summary.merge_all()
        train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train',
                                             sess.graph)
    
        validation_writer = tf.summary.FileWriter(
            FLAGS.summaries_dir + '/validation')
    
        # Create a train saver that is used to restore values into an eval graph
        # when exporting models.
        train_saver = tf.train.Saver()
    
        # Run the training for as many cycles as requested on the command line.
        ## 根据传入的迭代次数,开始训练
        for i in range(FLAGS.how_many_training_steps):
          # Get a batch of input bottleneck values, either calculated fresh every
          # time with distortions applied, or from the cache stored on disk.
          if do_distort_images:
            (train_bottlenecks,
             train_ground_truth) = get_random_distorted_bottlenecks(
                 sess, image_lists, FLAGS.train_batch_size, 'training',
                 FLAGS.image_dir, distorted_jpeg_data_tensor,
                 distorted_image_tensor, resized_image_tensor, bottleneck_tensor)
          else:
            ## 获取用于training的图片bottlenecks值,默认train_batch_size=100,即每次迭代会批量取100张图片进行训练
            (train_bottlenecks,
             train_ground_truth, _) = get_random_cached_bottlenecks(
                 sess, image_lists, FLAGS.train_batch_size, 'training',
                 FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor,
                 decoded_image_tensor, resized_image_tensor, bottleneck_tensor,
                 FLAGS.tfhub_module)
          # Feed the bottlenecks and ground truth into the graph, and run a training
          # step. Capture training summaries for TensorBoard with the `merged` op.
          ## 执行merge操作,并用feed_dict的内容填充placeholder
          train_summary, _ = sess.run(
              [merged, train_step],
              feed_dict={bottleneck_input: train_bottlenecks,
                         ground_truth_input: train_ground_truth})
          train_writer.add_summary(train_summary, i)
    
          # Every so often, print out how well the graph is training.
          ## 判断是否最后一步训练
          is_last_step = (i + 1 == FLAGS.how_many_training_steps)
        
          ## 默认eval_step_interval=10,即每训练10次或训练全部完成,打印一下当前的训练结果
          if (i % FLAGS.eval_step_interval) == 0 or is_last_step:
          ## 打印训练精确度和交叉熵
            train_accuracy, cross_entropy_value = sess.run(
                [evaluation_step, cross_entropy],
                feed_dict={bottleneck_input: train_bottlenecks,
                           ground_truth_input: train_ground_truth})
            tf.logging.info('%s: Step %d: Train accuracy = %.1f%%' %
                            (datetime.now(), i, train_accuracy * 100))
            tf.logging.info('%s: Step %d: Cross entropy = %f' %
                            (datetime.now(), i, cross_entropy_value))
            # TODO: Make this use an eval graph, to avoid quantization
            # moving averages being updated by the validation set, though in
            # practice this makes a negligable difference.
            ## 获取验证集的图片的bottleneck值,也是每批次取100
            validation_bottlenecks, validation_ground_truth, _ = (
                get_random_cached_bottlenecks(
                    sess, image_lists, FLAGS.validation_batch_size, 'validation',
                    FLAGS.bottleneck_dir, FLAGS.image_dir, jpeg_data_tensor,
                    decoded_image_tensor, resized_image_tensor, bottleneck_tensor,
                    FLAGS.tfhub_module))
            # Run a validation step and capture training summaries for TensorBoard
            # with the `merged` op.
            validation_summary, validation_accuracy = sess.run(
                [merged, evaluation_step],
                feed_dict={bottleneck_input: validation_bottlenecks,
                           ground_truth_input: validation_ground_truth})
            validation_writer.add_summary(validation_summary, i)
         
            ## 打印验证集的测试精确度和测试的图片数
            tf.logging.info('%s: Step %d: Validation accuracy = %.1f%% (N=%d)' %
                            (datetime.now(), i, validation_accuracy * 100,
                             len(validation_bottlenecks)))
    
          # Store intermediate results
          ## 存储瞬时结果
          intermediate_frequency = FLAGS.intermediate_store_frequency
    
          if (intermediate_frequency > 0 and (i % intermediate_frequency == 0)
              and i > 0):
            # If we want to do an intermediate save, save a checkpoint of the train
            # graph, to restore into the eval graph.
            train_saver.save(sess, CHECKPOINT_NAME)
            intermediate_file_name = (FLAGS.intermediate_output_graphs_dir +
                                      'intermediate_' + str(i) + '.pb')
            tf.logging.info('Save intermediate result to : ' +
                            intermediate_file_name)
            save_graph_to_file(intermediate_file_name, module_spec,
                               class_count)
    
        # After training is complete, force one last save of the train checkpoint.
        train_saver.save(sess, CHECKPOINT_NAME)
    
        # We've completed all our training, so run a final test evaluation on
        # some new images we haven't used before.
        ## 执行最终的评估
        run_final_eval(sess, module_spec, class_count, image_lists,
                       jpeg_data_tensor, decoded_image_tensor, resized_image_tensor,
                       bottleneck_tensor)
    
        # Write out the trained graph and labels with the weights stored as
        # constants.
        tf.logging.info('Save final result to : ' + FLAGS.output_graph)
        if wants_quantization:
          tf.logging.info('The model is instrumented for quantization with TF-Lite')
        save_graph_to_file(FLAGS.output_graph, module_spec, class_count)
        with tf.gfile.GFile(FLAGS.output_labels, 'w') as f:
          f.write('
    '.join(image_lists.keys()) + '
    ')
       
        ## 保存训练的graph
        if FLAGS.saved_model_dir:
          export_model(module_spec, class_count, FLAGS.saved_model_dir)
    

    main方法中的一些细节解释已经用中文备注在上述代码(使用“##”开头)中,它的主要步骤是:

    • 设置log级别
    • 准备workspace
    • 从image_dir载入输入图片集,并创建image_lists,该image_lists是一个字段,key为各个类别,value为对应类别的图集(包含训练集、测试集、验证集,划分比例默认为0.8、0.1、0.1)
    • 载入在ImageNet上已经训练好的Inception V3网络的特征张量
    • 针对每个图片,调用图片解码操作获得图片的原始张量和解码后张量
    • 针对每个图片的jpeg_data_tensor和decoded_image_tensor,创建其对应的bottlenects(实际上是1*2048维的张量),并缓存到磁盘
    • 获取训练步骤、交叉熵
    • 开始迭代训练
    • 每迭代10次,打印训练的精度和交叉熵,打印验证集的测试结果。默认情况下训练集和测试集都是取100张图
    • 训练完成后,使用测试集进行最后的评估
    • 结果的打印和保存

    2.3 其它方法

    分析完代码的主要执行路径,下面解读下其它方法。因为总的代码非常的长,篇幅有限,下面按照顺序简单介绍下其它方法的内容。

    2.3.1 create_image_lists

    def create_image_lists(image_dir, testing_percentage, validation_percentage):
        ...... 省略......
    	result[label_name] = {
            'dir': dir_name,
            'training': training_images,
            'testing': testing_images,
            'validation': validation_images,
        }
      return result
    

    根据image_dir的地址,testing_percentage和testing_percentage的比例划分图集,返回的格式类似如下:

    {
    	'correct': {
    		'dir': correct_image_dir,
    		'training': correct_training_images,
    		'testing': correct_testing_images,
    		'validation': correct_validation_images
    	},
    	'error': {
    		'dir': error_image_dir,
    		'training': error_training_images,
    		'testing': error_testing_images,
    		'validation': error_validation_images
    	}
    }
    

    每个training/testing/validation对应的value为image的file_name list。

    2.3.2 get_image_path

    获取图片的全路径

    2.3.3 get_bottleneck_path

    获得不同类别(training、testing、validation)的bottleneck路径

    2.3.4 create_module_graph

    根据给定的已训练好的模型Hub Module,创建模型的图

    2.3.5 run_bottleneck_on_image

    def run_bottleneck_on_image(sess, image_data, image_data_tensor,
                                decoded_image_tensor, resized_input_tensor,
                                bottleneck_tensor):
      """Runs inference on an image to extract the 'bottleneck' summary layer.
      Args:
        sess: Current active TensorFlow Session.
        image_data: String of raw JPEG data.
        image_data_tensor: Input data layer in the graph.
        decoded_image_tensor: Output of initial image resizing and preprocessing.
        resized_input_tensor: The input node of the recognition graph.
        bottleneck_tensor: Layer before the final softmax.
      Returns:
        Numpy array of bottleneck values.
      """
      # First decode the JPEG image, resize it, and rescale the pixel values.
      resized_input_values = sess.run(decoded_image_tensor,
                                      {image_data_tensor: image_data})
      # Then run it through the recognition network.
      bottleneck_values = sess.run(bottleneck_tensor,
                                   {resized_input_tensor: resized_input_values})
      bottleneck_values = np.squeeze(bottleneck_values)
      return bottleneck_values
    

    根据给定的输入图片解码后的tensor,计算bottleneck_values,并执行squeeze操作(删除单维度条目,把shape中为1的维度去掉)

    2.3.6 ensure_dir_exists

    确保目录存在:如果目录不存在,则创建目录

    2.3.7 create_bottleneck_file

    调run_bottleneck_on_image方法计算bottleneck值,并缓存到磁盘文件

    2.3.8 get_or_create_bottleneck

    批量获取一组图片的bottleneck值

    2.3.9 cache_bottlenecks

    批量缓存bottleneck

    2.3.10 get_random_cached_bottlenecks

    随机获取一批缓存的bottlenecks,以及其对应的真实标ground_truths和文件名filenames

    2.3.11 add_final_retrain_ops

    def add_final_retrain_ops(class_count, final_tensor_name, bottleneck_tensor,
                              quantize_layer, is_training):
    						  
      batch_size, bottleneck_tensor_size = bottleneck_tensor.get_shape().as_list()
      assert batch_size is None, 'We want to work with arbitrary batch size.'
      with tf.name_scope('input'):
        bottleneck_input = tf.placeholder_with_default(
            bottleneck_tensor,
            shape=[batch_size, bottleneck_tensor_size],
            name='BottleneckInputPlaceholder')
    
        ground_truth_input = tf.placeholder(
            tf.int64, [batch_size], name='GroundTruthInput')
    
      # Organizing the following ops so they are easier to see in TensorBoard.
      layer_name = 'final_retrain_ops'
      with tf.name_scope(layer_name):
        with tf.name_scope('weights'):
          initial_value = tf.truncated_normal(
              [bottleneck_tensor_size, class_count], stddev=0.001)
          layer_weights = tf.Variable(initial_value, name='final_weights')
          variable_summaries(layer_weights)
    
        with tf.name_scope('biases'):
          layer_biases = tf.Variable(tf.zeros([class_count]), name='final_biases')
          variable_summaries(layer_biases)
    
        with tf.name_scope('Wx_plus_b'):
          logits = tf.matmul(bottleneck_input, layer_weights) + layer_biases
          tf.summary.histogram('pre_activations', logits)
    
      final_tensor = tf.nn.softmax(logits, name=final_tensor_name)
    
      # The tf.contrib.quantize functions rewrite the graph in place for
      # quantization. The imported model graph has already been rewritten, so upon
      # calling these rewrites, only the newly added final layer will be
      # transformed.
      if quantize_layer:
        if is_training:
          tf.contrib.quantize.create_training_graph()
        else:
          tf.contrib.quantize.create_eval_graph()
    
      tf.summary.histogram('activations', final_tensor)
    
      # If this is an eval graph, we don't need to add loss ops or an optimizer.
      if not is_training:
        return None, None, bottleneck_input, ground_truth_input, final_tensor
    
      with tf.name_scope('cross_entropy'):
        cross_entropy_mean = tf.losses.sparse_softmax_cross_entropy(
            labels=ground_truth_input, logits=logits)
    
      tf.summary.scalar('cross_entropy', cross_entropy_mean)
    
      with tf.name_scope('train'):
        optimizer = tf.train.GradientDescentOptimizer(FLAGS.learning_rate)
        train_step = optimizer.minimize(cross_entropy_mean)
    
      return (train_step, cross_entropy_mean, bottleneck_input, ground_truth_input,
              final_tensor)
    

    在结尾处添加一个新的softmax层和全连接层(y=WX+b),用于训练和评估。此处与logistic模型是一样的,采用梯度下降的方式来最小化交叉熵进行迭代训练。

    2.3.12 add_evaluation_step

    def add_evaluation_step(result_tensor, ground_truth_tensor):
      with tf.name_scope('accuracy'):
        with tf.name_scope('correct_prediction'):
    	  ## 对每组向量按列找到最大值的index
          prediction = tf.argmax(result_tensor, 1)
    	  ## 将每组张量比较预测的结果和实际的结果的一致性,一致则为True,否则为False
          correct_prediction = tf.equal(prediction, ground_truth_tensor)
        with tf.name_scope('accuracy'):
    	  ## 将True或False转为float格式,并计算平均值
          evaluation_step = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
      tf.summary.scalar('accuracy', evaluation_step)
      return evaluation_step, prediction
    

    注解见上述代码,返回最终的accuracy和预测的值list。

    2.3.13 run_final_eval

    执行最终的评估,使用测试集进行结果评估。如果传入参数print_misclassified_test_images,则会打印评估出错的图片的名字和识别结果。

    2.3.14 save_graph_to_file

    将graph保存到文件

    2.3.15 prepare_file_system

    准备workspace

    2.3.16 add_jpeg_decoding

    将输入图片解析为张量,并进行解码

    2.3.17 export_model

    输出模型

  • 相关阅读:
    POJ 2991(线段树)
    UVa_1592
    紫书 -- 大整数类
    在结构体中添加成员函数/C++
    双向队列
    用埃氏筛法生成质数表
    poj 3687(拓扑排序)
    它们其实都是“图”-- 最小生成树
    最小生成树(MST, Minimum Spanning Tree)
    他们其实都是“图”--最短路
  • 原文地址:https://www.cnblogs.com/znicy/p/10937111.html
Copyright © 2011-2022 走看看