观看Tensorflow案例实战视频课程11 卷积神经网络模型
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt import input_data
mnist=input_data.read_data_sets('data/',one_hot=True) trainimg=mnist.train.images trainlabel=mnist.train.lables testimg=mnist.test.images testlabel=mnist.test.labels print("MNIST ready")
n_input=784 n_output=10 weights={ 'wc1':tf.Variable(tf.random_normal([3,3,1,64],stddev=0.1)), 'wc2':tf.Variable(tf.random_normal([3,3,64,128],stddev=0.1)), 'wd1':tf.Variable(tf.random_normal([7*7*128,1024],stddev=0.1)), 'wd2':tf.Variable(tf.random_normal([1024,n_output],stddev=0.1)) } biases={ 'bc1':tf.Variable(tf.random_normal([64],stddev=0.1)), 'bc2':tf.Variable(tf.random_normal([128],stddev=0.1)), 'bd1':tf.Variable(tf.random_normal([1024],stddev=0.1)), 'bd2':tf.Variable(tf.random_normal([n_output],stddev=0.1)) }