观看Tensorflow案例实战视频课程13 模型的保存和读取
import tensorflow as tf v1=tf.Variable(tf.random_normal([1,2]),name="v1") v2=tf.Variable(tf.random_normal([2,3]),name="v2") init_op=tf.global_variables_initializer() saver=tf.train.Saver() with tf.Session() as sess: sess.run(init_op) print("V1:",sess.run(v1)) print("V2:",sess.run(v2)) saver_path=saver.save(sess,"save/model.ckpt") print("Model saved in file:",saver_path)
import tensorflow as tf v1=tf.Variable(tf.random_normal([1,2]),name="v1") v2=tf.Variable(tf.random_normal([2,3]),name="v2") saver=tf.train.Saver() with tf.Session() as sess: saver.restore(sess,"save/model.ckpt") print("V1:",sess.run(v1)) print("V2:",sess.run(v2)) print("Model restored")
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt import input_data mnist=input_data.read_data_sets('data/',one_hot=True) trainimg=mnist.train.images trainlabel=mnist.train.lables testimg=mnist.test.images testlabel=mnist.test.labels print("MNIST ready") n_input=784 n_output=10 weights={ 'wc1':tf.Variable(tf.random_normal([3,3,1,64],stddev=0.1)), 'wc2':tf.Variable(tf.random_normal([3,3,64,128],stddev=0.1)), 'wd1':tf.Variable(tf.random_normal([7*7*128,1024],stddev=0.1)), 'wd2':tf.Variable(tf.random_normal([1024,n_output],stddev=0.1)) } biases={ 'bc1':tf.Variable(tf.random_normal([64],stddev=0.1)), 'bc2':tf.Variable(tf.random_normal([128],stddev=0.1)), 'bd1':tf.Variable(tf.random_normal([1024],stddev=0.1)), 'bd2':tf.Variable(tf.random_normal([n_output],stddev=0.1)) } def conv_basic(_input,_w,_b,_keepratio): #INPUT _input_r=tf.reshape(_input,shape=[-1,28,28,1]) #CONV LAYER 1 _conv1=tf.nn.conv2d(_input_r,_w['wc1'],strides=[1,1,1,1],padding='SAME') #_mean,_var=tf.nn.moments(_conv1,[0,1,2]) #_conv1=tf.nn.batch_normalization(_conv1,_mean,_var,0,1,0.0001) _conv1=tf.nn.relu(tf.nn.bias_add(_conv1,_b['bc1'])) _pool1=tf.nn.max_pool(_conv1,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') _pool_dr1=tf.nn.dropout(_pool1,_keepratio) #CONV LEYER 2 _conv2=tf.nn.conv2d(_pool_dr1,_w['wc2'],strides=[1,1,1,1],padding='SAME') #_mean,_var=tf.nn.moments(_conv2,[0,1,2]) #_conv2=tf.nn.batch_normalization(_conv2,_mean,_var,0,1,0.0001) _conv2=tf.nn.relu(tf.nn.bias_add(_conv2,_b['bc2'])) _pool2=tf.nn.max_pool(_conv2,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME') _pool_dr2=tf.nn.dropout(_pool2,_keepratio) #VECTORIZE _densel=tf.reshape(_pool_dr2,[-1,_w['wd1'].get_shape().as_list()[0]]) #FULLY CONNECTED LAVER 1 _fc1=tf.nn.relu(tf.add(tf.matmul(_densel,_w['wd1']),_b['bd1'])) _fc_dr1=tf.nn.dropout(_fc1,_keepratio) #FULLY CONNECTED LAVER 2 _out=tf.add(tf.matmul(_fc_dr1,_w['wd2']),_b['bd2']) #RETURN out={'input_r':_input_r,'conv1':_conv1,'pool1':_pool1,'pool1_dr1':_pool_dr1, 'conv2':_conv2,'pool2':_pool2,'pool_dr2':_pool_dr2,'densel':_densel, 'fc1':_fc1,'fc_dr1':_fc_dr1,'out':_out } return out print("CNN READY")
x=tf.placeholder(tf.float32,[None,n_input]) y=tf.placeholder(tf.float32,[None,n_output]) keepratio=tf.placeholder(tf.float32) #FUNCTIONS _pred=conv_basic(x,weights,biases,keepratio)['out'] cost=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(_pred,y)) optm=tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost) _corr=tf.equal(tf.argmax(_pred,1),tf.argmax(y,1)) accr=tf.reduce_mean(tf.cast(_corr,tf.float32)) init=tf.global_variables_initializer() #SAVER save_step=1 saver=tf.train.Saver(max_to_keep=3) print("GRAPH READY")
#do_train=1 do_train=0 sess=tf.Session() sess.run(init)
training_epochs=15 batch_size=16 display_step=1 if do_train==1: for epoch in range(training_epochs): avg_cost=0 #total_batch=int(mnist.train.num_examples/batch_size) total_batch=10 #Loop over all batches for i in range(total_batch): batch_xs,batch_ys=mnist.train.next_batch(batch_size) #Fit training using batch data sess.run(optm,feed_dict={x:batch_xs,y:batch_ys,keepratio:0.7}) #Compute average loss avg_cost+=sess.run(cost,feed_dict={x:batch_xs,y:batch_ys,keepratio:1.})/total_batch #Display logs per epoch step if epoch % display_step==0: print("Epoch:%03d/%03d cost:%.9f" % (epoch,training_epochs,avg_cost)) train_acc=sess.run(accr,feed_dict={x:batch_xs,y:batch_ys,keepratio:1.}) print("Training accuracy:%.3f" % (train_acc)) #test_acc=sess.run(accr,feed_dict={x:testimg,y:testlabel,keepratio:1.}) #print("Test accuracy:%.3f" % (test_acc)) #Save Net if epoch % save_step==0: saver.save(sess,"save/nets/cnn_mnist_basic.ckpt-"+str(epoch)) print("OPTIMIZATION FINISHED")
if do_train==0: epoch=training_epochs-1 saver.restore(sess,"save/nets/cnn_mnist_basic.ckpt-"+str(epoch)) test_acc=sess.run(accr,feed_dict={x:testimg,y:testlabel,keepratio:1.}) print("TEST ACCURACY:%.3f" % (test_acc))