题意
Sol
神仙题Orz
我们考虑选的边的补集,可以很惊奇的发现,这个补集中的边恰好是原图中的一颗生成树;
并且答案就是所有边权的和减去这个边集中的边的权值;
于是我们只需要求最大生成树就好了;
#include<bits/stdc++.h>
using namespace std;
const int MAXN = 2e6 + 10, INF = 1e9 + 10;
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, M, T, val, ans, f[MAXN];
struct Edge {
int u, v, w;
bool operator < (const Edge &rhs) const {
return w > rhs.w;
}
}E[MAXN];
int fa[MAXN];
int find(int x) {
return fa[x] == x ? fa[x] : fa[x] = find(fa[x]);
}
void Kruskal() {
memset(f, 0, sizeof(f));
val = -1; ans = 0;
sort(E + 1, E + M + 1);
for(int i = 1; i <= N; i++) fa[i] = i;
for(int i = 1; i <= M; i++) {
int x = E[i].u, y = E[i].v, w = E[i].w, fx = find(x), fy = find(y);
if(fx == fy) continue;
fa[fx] = fy; f[i] = 1;
ans += w;
}
for(int i = 1; i <= M; i++) if(!f[i]) {val = E[i].w; break;}
}
int main() {
// freopen("a.in", "r", stdin);
T = read();
for(int i = 1; i <= T; i++) {
N = read(); M = read(); int sum = 0;
for(int j = 1; j <= M; j++) E[j].u = read(), E[j].v = read(), E[j].w = read(), sum += E[j].w;
Kruskal();
printf("Case #%d: %d %d
", i, sum - ans, val);
}
return 0;
}