zoukankan      html  css  js  c++  java
  • 洛谷P4027 [NOI2007]货币兑换(dp 斜率优化 cdq 二分)

    题意

    题目链接

    Sol

    解题的关键是看到题目里的提示。。。

    (f[i])表示到第(i)天所持有软妹币的最大数量,显然答案为(max_{i = 1}^n f[i])

    转移为(f_i = max(f_{i - 1}, A_i frac{f_j R_j}{A_j R_j + B_j} + B_i frac{f_j}{A_j R_j + B_j}))

    变形一下:

    [frac{f_i}{B_i} - frac{f_j}{A_j R_j + B_j} = frac{A_i}{B_i} frac{f_j R_j}{A_j R_j + B_j} ]

    (y_i = frac{f_j}{A_j R_j + B_j}, x_i = frac{f_j R_j}{A_j R_j + B_j})

    显然可以斜率优化,也就是拿一条斜率为(-frac{A_i}{B_i})的直线从上往下切。

    但是这里的斜率和(x)都是不单调的。

    按照老祖宗说的

    (x)不单调cdq

    斜率不单调二分凸包

    然后xjb写一写就好了。我写的cdq复杂度是(O(nlog^2n))的,每次暴力建左侧的凸包,然后在右边二分,虽然很好写,但是在BZOJ上成功T飞。。

    看了下SovietPower大佬的博客发现有nlogn的做法Orz,就是先按斜率排序,然后转移的时候把下标分为(<mid)(>= mid)的,直接用类似双指针的东西扫就行了

    #include<bits/stdc++.h> 
    #define Pair pair<double, double>
    #define MP(x, y) make_pair(x, y)
    #define fi first
    #define se second
    //#define int long long 
    #define LL long long 
    #define db  double
    #define Fin(x) {freopen(#x".in","r",stdin);}
    #define Fout(x) {freopen(#x".out","w",stdout);}
    using namespace std;
    const int MAXN = 1e6 + 10, mod = 1e9 + 7, INF = 1e9 + 10;
    const double eps = 1e-9;
    template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
    template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
    template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
    template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
    template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
    template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
    template <typename A> inline void debug(A a){cout << a << '
    ';}
    template <typename A> inline LL sqr(A x){return 1ll * x * x;}
    inline int read() {
        char c = getchar(); int x = 0, f = 1;
        while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
        while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
        return x * f;
    }
    int N, S;
    struct Sta {
        int id;
        db A, B, R, x, y, f;
        void Get() {
            x = f * R / (A * R + B);
            y = f / (A * R + B);
        }
        bool operator < (const Sta &rhs) const {
            return f < rhs.f;
        }
    }a[MAXN], st[MAXN];
    vector<Pair> v;
    double GetK(Pair a, Pair b) {
        if((b.fi - a.fi) < eps) return INF;
        return (b.se - a.se) / (b.fi - a.fi);
    }
    void GetConvexHull(int l, int r) {
        v.clear();
        for(int i = l; i <= r; i++) {
            double x = a[i].x, y = a[i].y;
            while(v.size() > 1 && ((GetK(v[v.size() - 1], MP(x, y)) > GetK(v[v.size() - 2], v[v.size() - 1])) )) v.pop_back();
            v.push_back(MP(x, y));
        }
    }
    int cnt = 0;
    db Find(int id, db k) {
        int l = 0, r = v.size() - 1, ans = 0;
        while(l <= r) {
            int mid = l + r >> 1;
            if((mid == 0) || (GetK(v[mid - 1], v[mid]) > k)) l = mid + 1, ans = mid;
            else r = mid - 1;
        }
        return a[id].A * v[ans].fi + a[id].B * v[ans].se;
    }
    db CDQ(int l, int r) {
        if(l == r) {
            int i = l;
            chmax(a[i].f, a[i - 1].f); 
            chmax(a[i].f, a[i].f * ((a[i].A * a[i].R + a[i].B) / (a[i].A * a[i].R  + a[i].B)));
            a[l].Get(); 
            return a[i].f;
        }
        int mid = l + r >> 1;
        db lmx = CDQ(l, mid); 
        GetConvexHull(l, mid);
        for(int i = mid + 1; i <= r; i++) chmax(a[i].f, max(lmx, Find(i, -a[i].A / a[i].B)));
        CDQ(mid + 1, r);
        int tl = l, tr = mid + 1, tot = tl - 1;
        while(tl <= mid || tr <= r) {
            if((tr > r) || (tl <= mid && a[tl].x < a[tr].x)) st[++tot] = a[tl++];//这里要加上tl <= mid 
            else st[++tot] = a[tr++];
        }
        db rt = 0;
        for(int i = l; i <= r; i++) a[i] = st[i], chmax(rt, a[i].f);
        return rt;
    }
    signed main() {
    //  freopen("a.in", "r", stdin);
        N = read(); S = read();
        for(int i = 1; i <= N; i++) scanf("%lf %lf %lf", &a[i].A, &a[i].B, &a[i].R), a[i].id = i;
        a[0].f = S;
        CDQ(1, N);
        db ans = 0;
        for(int i = 1; i <= N; i++) chmax(ans, a[i].f);
        printf("%.3lf", ans);
        return 0;
    }
    
  • 相关阅读:
    从今天起,我要在博客园装13了,听说这里装的好可以得高薪
    HTML5 选择前置摄像头,选择后置摄像头
    canvas图片base64编码后,ajax提交到后台
    238. Product of Array Except Self
    230. Kth Smallest Element in a BST
    229. Majority Element II
    228. Summary Ranges
    227. Basic Calculator II
    223. Rectangle Area
    222. Count Complete Tree Nodes
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/10205864.html
Copyright © 2011-2022 走看看