zoukankan      html  css  js  c++  java
  • BZOJ2956: 模积和(数论分块)

    题意

    题目链接

    Sol

    啊啊这题好恶心啊,推的时候一堆细节qwq

    (a \% i = a - frac{a}{i} * i)

    把所有的都展开,直接分块。关键是那个(i ot= j)的地方需要减。。。。

    然后就慢慢写就好了

    #include<bits/stdc++.h>
    #define Pair pair<int, int>
    #define MP(x, y) make_pair(x, y)
    #define fi first
    #define se second
    #define int long long
    #define LL long long
    #define Fin(x) {freopen(#x".in","r",stdin);}
    #define Fout(x) {freopen(#x".out","w",stdout);}
    using namespace std;
    const int MAXN = 1e6 + 10, mod = 19940417, INF = 1e9 + 10;
    const double eps = 1e-9;
    template <typename A, typename B> inline LL add(A x, B y) {
    	if(x + y < 0) return x + y + mod;
    	return x + y >= mod ? x + y - mod : x + y;
    }
    template <typename A, typename B> inline void add2(A &x, B y) {
    	if(x + y < 0) x = x + y + mod;
    	else x = (x + y >= mod ? x + y - mod : x + y);
    }
    template <typename A, typename B> inline LL mul(A x, B y) {
    	x = (x + mod) % mod;
    	y = (y + mod) % mod;
    	return 1ll * x * y % mod;
    }
    template <typename A> inline LL sqr(A x) {
    	return 1ll * x * x;
    }
    int N, M, a, b;
    int sum(int l, int r) {
    	if(l == r) return l;
    	int n = r - l + 1;
    	if(n & 1) return add(mul(l, n), mul(n, (n - 1) / 2));
    	else return add(mul(l, n), mul(n / 2, n - 1));
    }
    int calc(int n) {
    	int ret = 0;
    	for(int i = 1, j; i <= n; i = j + 1) {
    		j = n / (n / i);
    		add2(ret, mul(n / j, sum(i, j)));
    	}
    	return ret;
    }
    int get(int x) {
    	int a = x, b = 2 * x + 1, c = x + 1;
    	if(a % 2 == 0) a /= 2;
    	else if(b % 2 == 0) b /= 2;
    	else if(c % 2 == 0) c /= 2;
    	if(a % 3 == 0) a /= 3;
    	else if(b % 3 == 0) b /= 3;
    	else if(c % 3 == 0) c /= 3;
    	return mul(mul(a, b), c);
    }
    int fuck2(int i, int j) {//sum k^2
    	return add(get(j), -get(i - 1));
    }
    int calc2() {
    	int ret = 0;
    	for(int i = 1, j; i <= N; i = j + 1) {
    		j = min(M / (M / i), N / (N / i));
    		int a = M / i, b = N / i;
    		add2(ret, add(add(mul(N, mul(a, sum(i, j))), mul(M, mul(b, sum(i, j)))), -mul(mul(a, b), fuck2(i, j))));
    	}
    	return ret;
    }
    signed main() {
    	cin >> N >> M;
    	if(N > M) swap(N, M);
    	a = calc(N);
    	b = calc(M);
    	int ans = mul(add(mul(N, N), -a), add(mul(M, M), -b));
    	add2(ans, -mul(N, mul(N, M)));
    	add2(ans, calc2());
    	cout << ans;
    	return 0;
    }
    
  • 相关阅读:
    AdaBoost算法学习
    梯度下降与随机梯度下降
    Logistic Regression学习
    PCA算法
    VS2013常见错误排查
    K临近算法
    遗传算法小结
    SLIC超像素(superpixel)算法
    openslide api函数概要
    线程钩子
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/10354987.html
Copyright © 2011-2022 走看看