zoukankan      html  css  js  c++  java
  • 洛谷P1730 最小密度路径(floyd)

    题意

    题目链接

    Sol

    zz floyd。

    很显然的一个dp方程(f[i][j][k][l])表示从(i)(j)经过了(k)条边的最小权值

    可以证明最优路径的长度一定(leqslant N)

    然后一波(n^4) dp就完了

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    const int INF = 1e9 + 10;
    inline int read() {
    	char c = getchar(); int x = 0, f = 1;
    	while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    	while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    	return x * f;
    }
    int N, M;
    int f[51][51][1001];
    int main() {
    	//memset(f, 0x3f, sizeof(f));
    	N = read(); M = read();
    	for(int k = 1; k <= N; k++)
    		for(int i = 1; i <= N; i++)
    			for(int j = 1; j <= N; j++)
    				f[i][j][k] = INF;
    	for(int i = 1; i <= M; i++) {
    		int x = read(), y = read(), w = read();
    		f[x][y][1] = min(f[x][y][1], w);
    	}
    	for(int l = 2; l <= N; l++)// num of edge 
    		for(int k = 1; k <= N; k++) // mid point 
    			for(int i= 1; i <= N; i++) // start point 
    				for(int j = 1; j <= N; j++) // end point
    					f[i][j][l] = min(f[i][j][l], f[i][k][l - 1] + f[k][j][1]);
    	int Q = read();
    	while(Q--) {
    		int x = read(), y = read();
    		double ans = 1e18;
    		for(int i = 1; i <= N; i++) if(f[x][y][i] != INF) ans = min(ans, (double) f[x][y][i] / i);
    		if(ans == 1e18) puts("OMG!");
    		else printf("%.3lf
    ", ans);
    	}
    	return 0;
    }
    /*
    */
    
  • 相关阅读:
    tcp socket
    Spring MVC 复习笔记01
    Spring 复习笔记01
    mybatis 复习笔记03
    ActiveMQ实现负载均衡+高可用部署方案(转)
    JVM复习笔记
    JAVA NIO复习笔记
    java IO复习笔记
    并发编程复习笔记
    杂记复习笔记
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/9800711.html
Copyright © 2011-2022 走看看