zoukankan      html  css  js  c++  java
  • 过河卒 NOIp 2002 dp

    题目描述

    棋盘上AAA点有一个过河卒,需要走到目标BBB点。卒行走的规则:可以向下、或者向右。同时在棋盘上CCC点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。

    棋盘用坐标表示,AAA点(0,0)(0, 0)(0,0)、BBB点(n,m)(n, m)(n,m)(nnn, mmm为不超过202020的整数),同样马的位置坐标是需要给出的。

    现在要求你计算出卒从AAA点能够到达BBB点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

    输入输出格式

    输入格式:

    一行四个数据,分别表示BBB点坐标和马的坐标。

    输出格式:

    一个数据,表示所有的路径条数。

    输入输出样例

    输入样例#1: 复制
    6 6 3 3
    
    输出样例#1: 复制
    6
    

    说明

    结果可能很大!

    一个人问我的,那我就干脆写上吧。。

    直接无脑dfs40分,

    考虑dp即可;

    很容易想到 dp[ i ][ j ]=dp[ i-1 ][ j ]+dp[ i ][ j-1 ];

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstdlib>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<map>
    #include<set>
    #include<vector>
    #include<queue>
    #include<bitset>
    #include<ctime>
    #include<deque>
    #include<stack>
    #include<functional>
    #include<sstream>
    //#pragma GCC optimize(2)
    //#include<cctype>
    //#pragma GCC optimize("O3")
    using namespace std;
    #define maxn 700005
    #define inf 0x3f3f3f3f
    #define INF 9999999999
    #define rdint(x) scanf("%d",&x)
    #define rdllt(x) scanf("%lld",&x)
    #define rdult(x) scanf("%lu",&x)
    #define rdlf(x) scanf("%lf",&x)
    #define rdstr(x) scanf("%s",x)
    typedef long long  ll;
    typedef unsigned long long ull;
    typedef unsigned int U;
    #define ms(x) memset((x),0,sizeof(x))
    const long long int mod = 1e9 + 7;
    #define Mod 1000000000
    #define sq(x) (x)*(x)
    #define eps 1e-3
    typedef pair<int, int> pii;
    #define pi acos(-1.0)
    //const int N = 1005;
    #define REP(i,n) for(int i=0;i<(n);i++)
    
    inline ll rd() {
    	ll x = 0;
    	char c = getchar();
    	bool f = false;
    	while (!isdigit(c)) {
    		if (c == '-') f = true;
    		c = getchar();
    	}
    	while (isdigit(c)) {
    		x = (x << 1) + (x << 3) + (c ^ 48);
    		c = getchar();
    	}
    	return f ? -x : x;
    }
    
    ll gcd(ll a, ll b) {
    	return b == 0 ? a : gcd(b, a%b);
    }
    ll sqr(ll x) { return x * x; }
    
    /*ll ans;
    ll exgcd(ll a, ll b, ll &x, ll &y) {
    	if (!b) {
    		x = 1; y = 0; return a;
    	}
    	ans = exgcd(b, a%b, x, y);
    	ll t = x; x = y; y = t - a / b * y;
    	return ans;
    }
    */
    
    
    
    ll qpow(ll a, ll b, ll c) {
    	ll ans = 1;
    	a = a % c;
    	while (b) {
    		if (b % 2)ans = ans * a%c;
    		b /= 2; a = a * a%c;
    	}
    	return ans;
    }
    
    int n, m;
    int Map[100][100];
    ll ans;
    int dx[] = { 1,1,2,2,-1,-1,-2,-2 };
    int dy[] = { 2,-2,1,-1,2,-2,1,-1 };
    
    int ddx[] = { 1,0 };
    int ddy[] = { 0,1 };
    
    bool check(int x, int y) {
    	return (x >= 0 && x <= n&&y >= 0 && y <= m);
    }
    
    ll dp[100][100];
    
    int main(){
    	//ios::sync_with_stdio(0);
    	rdint(n); rdint(m);
    	int x, y; rdint(x); rdint(y); Map[x][y] = 1;
    	for (int i = 0; i < 8; i++) {
    		int nx = x + dx[i], ny = y + dy[i];
    		if (nx >= 0 && nx <= n&&ny >= 0 && ny <= m)Map[nx][ny] = 1;
    	}
    	dp[0][0] = 0; dp[1][0] = 1; dp[0][1] = 1;
    	for (int i = 0; i <= n; i++) {
    		for (int j = 0; j <= m; j++) {
    			if (Map[i][j])continue;
    			if (!Map[i][j + 1]) {
    				dp[i][j + 1] += dp[i][j];
    			}
    			if (!Map[i + 1][j]) {
    				dp[i + 1][j] += dp[i][j];
    			}
    		}
    	}
    	cout << dp[n][m] << endl;
        return 0;
    }
    
    EPFL - Fighting
  • 相关阅读:
    电子书下载:Microsoft Silverlight 4 and SharePoint 2010 Integration
    电子书下载:Silverlight 4: Problem – Design – Solution
    电子书下载:Canvas Pocket Reference: Scripted Graphics for HTML5
    Delphi 控件 DevExpress VCL 5.3
    电子书下载:XNA 3D Primer
    电子书下载:Microsoft Silverlight 4 Data and Services Cookbook
    [掌心网]苹果iPhone开发者的Windows Phone 7使用报告
    Microsoft Windows Phone 7 Toolkit Silverlight SDK XNA Game Studio 4.0 开发工具套件正式版下载
    电子书下载:Agile in a Flash: SpeedLearning Agile Software Development
    How to fix compatibility mode error that can appear when installing Windows Phone Developer Tools or Visual Studio 2010
  • 原文地址:https://www.cnblogs.com/zxyqzy/p/10092566.html
Copyright © 2011-2022 走看看