zoukankan      html  css  js  c++  java
  • Fast Matrix Operations UVA

    题意翻译

    有一个r行c列的全0矩阵,有以下三种操作。

    • 1 X1 Y1 X2 Y2 v 子矩阵(X1,Y1,X2,Y2)的元素加v

    • 2 X1 Y1 X2 Y2 v 子矩阵(X1,Y1,X2,Y2)的元素变为v

    • 3 X1 Y1 X2 Y2 查询子矩阵(X1,Y1,X2,Y2)的和,最大值,最小值

    子矩阵(X1,Y1,X2,Y2)满足X1<=X<=X2 Y1<=Y<=Y2的所有元素(X1,Y2)。

    输入保证和不超过10^9

    感谢@Himself65 提供的翻译

    题目描述

    PDF

    输入输出格式

    输入格式:

    输出格式:

    输入输出样例

    输入样例#1: 复制
    4 4 8
    1 1 2 4 4 5
    3 2 1 4 4
    1 1 1 3 4 2
    3 1 2 4 4
    3 1 1 3 4
    2 2 1 4 4 2
    3 1 2 4 4
    1 1 1 4 3 3
    输出样例#1: 复制
    45 0 5
    78 5 7
    69 2 7
    39 2 7
    注意setv和addv的优先级,当有setv时,addv就不应该再有影响;
    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstdlib>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<map>
    #include<set>
    #include<vector>
    #include<queue>
    #include<bitset>
    #include<ctime>
    #include<time.h>
    #include<deque>
    #include<stack>
    #include<functional>
    #include<sstream>
    //#include<cctype>
    //#pragma GCC optimize(2)
    using namespace std;
    #define maxn 2000005
    #define inf 0x7fffffff
    //#define INF 1e18
    #define rdint(x) scanf("%d",&x)
    #define rdllt(x) scanf("%lld",&x)
    #define rdult(x) scanf("%lu",&x)
    #define rdlf(x) scanf("%lf",&x)
    #define rdstr(x) scanf("%s",x)
    #define mclr(x,a) memset((x),a,sizeof(x))
    typedef long long  ll;
    typedef unsigned long long ull;
    typedef unsigned int U;
    #define ms(x) memset((x),0,sizeof(x))
    const long long int mod = 1e9 + 7;
    #define Mod 1000000000
    #define sq(x) (x)*(x)
    #define eps 1e-5
    typedef pair<int, int> pii;
    #define pi acos(-1.0)
    //const int N = 1005;
    #define REP(i,n) for(int i=0;i<(n);i++)
    typedef pair<int, int> pii;
    
    inline int rd() {
    	int x = 0;
    	char c = getchar();
    	bool f = false;
    	while (!isdigit(c)) {
    		if (c == '-') f = true;
    		c = getchar();
    	}
    	while (isdigit(c)) {
    		x = (x << 1) + (x << 3) + (c ^ 48);
    		c = getchar();
    	}
    	return f ? -x : x;
    }
    
    
    ll gcd(ll a, ll b) {
    	return b == 0 ? a : gcd(b, a%b);
    }
    int sqr(int x) { return x * x; }
    
    
    
    /*ll ans;
    ll exgcd(ll a, ll b, ll &x, ll &y) {
    	if (!b) {
    		x = 1; y = 0; return a;
    	}
    	ans = exgcd(b, a%b, x, y);
    	ll t = x; x = y; y = t - a / b * y;
    	return ans;
    }
    */
    
    struct node {
    	int sum[maxn], minn[maxn], maxx[maxn], ls[maxn], rs[maxn], setv[maxn], addv[maxn];
    	int tt, rt;
    	void init() {
    		tt = rt = 1; mclr(setv, -1); ms(addv);
    		ms(sum); ms(minn); ms(maxx); ms(ls); ms(rs);
    	}
    	void pushup(int o) {
    		sum[o] = sum[ls[o]] + sum[rs[o]];
    		minn[o] = min(minn[ls[o]], minn[rs[o]]);
    		maxx[o] = max(maxx[ls[o]], maxx[rs[o]]);
    	}
    	void pushdown(int o,int l,int r) {
    		if (setv[o]!=-1) {
    			int mid = (l + r) >> 1;
    			if (!ls[o])ls[o] = ++tt; if (!rs[o])rs[o] = ++tt;
    			sum[ls[o]] = setv[o] * (mid - l + 1);
    			sum[rs[o]] = setv[o] * (r - mid);
    			minn[ls[o]] = minn[rs[o]] = maxx[ls[o]] = maxx[rs[o]] = setv[o];
    			setv[ls[o]] = setv[o]; setv[rs[o]] = setv[o]; setv[o] = -1; addv[ls[o]] = addv[rs[o]] = 0;
    		}
    		if (addv[o]) {
    			int mid = (l + r) >> 1;
    			if (!ls[o])ls[o] = ++tt; if (!rs[o])rs[o] = ++tt;
    			sum[ls[o]] += addv[o] * (mid - l + 1); sum[rs[o]] += addv[o] * (r - mid);
    			maxx[ls[o]] += addv[o]; maxx[rs[o]] += addv[o];
    			minn[ls[o]] += addv[o]; minn[rs[o]] += addv[o];
    			addv[ls[o]] += addv[o]; addv[rs[o]] += addv[o];
    			addv[o] = 0;
    		}
    	}
    	void upd(int &o, int L, int R, int l, int r, int opt,int val) {
    		if (!o) {
    			o = ++tt;
    		}
    		if (L <= l && r <= R) {
    			if (opt == 1) {
    				sum[o] += (r - l + 1)*val;
    				maxx[o] += val; minn[o] += val;
    				addv[o] += val;
    			}
    			else {
    				sum[o] = (r - l + 1)*val;
    				maxx[o] = val; minn[o] = val;
    				setv[o] = val; addv[o] = 0;
    			}
    			return;
    		}
    		pushdown(o, l, r);
    		int mid = (l + r) >> 1;
    		if (L <= mid)upd(ls[o], L, R, l, mid, opt, val);
    		if (mid < R)upd(rs[o], L, R, mid + 1, r, opt, val);
    		pushup(o);
    	}
    	int Sum(int L, int R, int l, int r, int o) {
    		if (L <= l && r <= R) {
    			return sum[o];
    		}
    		pushdown(o, l, r);
    		int mid = (l + r) >> 1;
    		int ans = 0;
    		if (L <= mid)ans += Sum(L, R, l, mid, ls[o]);
    		if (mid < R)ans += Sum(L, R, mid + 1, r, rs[o]);
    		return ans;
    	}
    	int Max(int L, int R, int l, int r, int o) {
    		if (L <= l && r <= R)return maxx[o];
    		pushdown(o, l, r);
    		int mid = (l + r) >> 1;
    		int MAX = -inf;
    		if (L <= mid)MAX = max(MAX, Max(L, R, l, mid, ls[o]));
    		if (mid < R)MAX = max(MAX, Max(L, R, mid + 1, r, rs[o]));
    		return MAX;
    	}
    	int Min(int L, int R, int l, int r, int o) {
    		if (L <= l && r <= R)return minn[o];
    		pushdown(o, l, r);
    		int mid = (l + r) >> 1;
    		int MIN = inf;
    		if (L <= mid)MIN = min(MIN, Min(L, R, l, mid, ls[o]));
    		if (mid < R)MIN = min(MIN, Min(L, R, mid + 1, r, rs[o]));
    		return MIN;
    	}
    }t[22];
    
    int main()
    {
    	//	ios::sync_with_stdio(0);
    	int r, c, m;
    	while (cin >> r >> c >> m) {
    		for (int i = 1; i <= r; i++)t[i].init();
    		while (m--) {
    			int opt = rd();
    			if (opt == 1) {
    				int X1 = rd(), Y1 = rd(), X2 = rd(), Y2 = rd(), v = rd();
    				for (int i = X1; i <= X2; i++)t[i].upd(t[i].rt, Y1, Y2, 1, c, 1, v);
    			}
    			else if (opt == 2) {
    				int X1 = rd(), Y1 = rd(), X2 = rd(), Y2 = rd(), v = rd();
    				for (int i = X1; i <= X2; i++)t[i].upd(t[i].rt, Y1, Y2, 1, c, 2, v);
    			}
    			else {
    				int ans = 0, ans1 = inf, ans2 = -inf;
    				int X1 = rd(), Y1 = rd(), X2 = rd(), Y2 = rd();
    				for (int i = X1; i <= X2; i++) {
    					ans += t[i].Sum(Y1, Y2, 1, c, t[i].rt);
    					ans1 = min(ans1, t[i].Min(Y1, Y2, 1, c, t[i].rt));
    					ans2 = max(ans2, t[i].Max(Y1, Y2, 1, c, t[i].rt));
    				}
    				printf("%d %d %d
    ", ans, ans1, ans2);
    			}
    		}
    	}
    	return 0;
    }
    
    
    
    EPFL - Fighting
  • 相关阅读:
    与众不同 windows phone (12) Background Task(后台任务)之 PeriodicTask(周期任务)和 ResourceIntensiveTask(资源密集型任务)
    直观理解图像的傅里叶变换
    简明Python3教程 13.面向对象编程
    简明Python3教程 4.安装
    简明Python3教程 8.控制流
    简明Python3教程 11.数据结构
    简明Python3教程 16.标准库
    简明Python3教程 12.问题解决
    简明Python3教程 9.函数
    简明Python3教程 2.序言
  • 原文地址:https://www.cnblogs.com/zxyqzy/p/10362238.html
Copyright © 2011-2022 走看看