zoukankan      html  css  js  c++  java
  • Machine learning 第7周编程作业 SVM

    1.Gaussian Kernel

    function sim = gaussianKernel(x1, x2, sigma)
    %RBFKERNEL returns a radial basis function kernel between x1 and x2
    %   sim = gaussianKernel(x1, x2) returns a gaussian kernel between x1 and x2
    %   and returns the value in sim
    
    % Ensure that x1 and x2 are column vectors
    x1 = x1(:); x2 = x2(:);
    
    % You need to return the following variables correctly.
    sim = 0;
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Fill in this function to return the similarity between x1
    %               and x2 computed using a Gaussian kernel with bandwidth
    %               sigma
    %
    %
    
    m=length(x1)
    sum=0
    for i=1:m,
      sum=sum-((x1(i)-x2(i))^2)
    endfor
    
    sim=exp(sum/(2*sigma^2))
    
    
    % =============================================================
        
    end
    

      

    2.Example Dataset 3

    function [C, sigma] = dataset3Params(X, y, Xval, yval)
    %DATASET3PARAMS returns your choice of C and sigma for Part 3 of the exercise
    %where you select the optimal (C, sigma) learning parameters to use for SVM
    %with RBF kernel
    %   [C, sigma] = DATASET3PARAMS(X, y, Xval, yval) returns your choice of C and 
    %   sigma. You should complete this function to return the optimal C and 
    %   sigma based on a cross-validation set.
    %
    
    % You need to return the following variables correctly.
    C = 1;
    sigma = 0.3;
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Fill in this function to return the optimal C and sigma
    %               learning parameters found using the cross validation set.
    %               You can use svmPredict to predict the labels on the cross
    %               validation set. For example, 
    %                   predictions = svmPredict(model, Xval);
    %               will return the predictions on the cross validation set.
    %
    %  Note: You can compute the prediction error using 
    %        mean(double(predictions ~= yval))
    %
    steps=[0.01,0.03,0.1,0.3,1,3,10,30];
    minerror=Inf;
    minC=Inf;
    minsigma=Inf;
    
    for i=1:length(steps),
      for j=1:length(steps),
        curc=steps(i);
        cursigma=steps(j);
        model=svmTrain(X,y,curc,@(x1,x2)gaussianKernel(x1,x2,cursigma));
        predictions=svmPredict(model,Xval);
        error=mean(double(predictions~=yval));
        if(error<minerror)
           minerror=error;
           minC=curc;
           minsigma=cursigma;
        end 
      endfor
    endfor
    
    C=minC;
    sigma=minsigma;
    
    
    % =========================================================================
    
    end
    

      

    3.Vocabulary List

    function word_indices = processEmail(email_contents)
    %PROCESSEMAIL preprocesses a the body of an email and
    %returns a list of word_indices 
    %   word_indices = PROCESSEMAIL(email_contents) preprocesses 
    %   the body of an email and returns a list of indices of the 
    %   words contained in the email. 
    %
    
    % Load Vocabulary
    vocabList = getVocabList();
    
    % Init return value
    word_indices = [];
    
    % ========================== Preprocess Email ===========================
    
    % Find the Headers ( 
    
     and remove )
    % Uncomment the following lines if you are working with raw emails with the
    % full headers
    
    % hdrstart = strfind(email_contents, ([char(10) char(10)]));
    % email_contents = email_contents(hdrstart(1):end);
    
    % Lower case
    email_contents = lower(email_contents);
    
    % Strip all HTML
    % Looks for any expression that starts with < and ends with > and replace
    % and does not have any < or > in the tag it with a space
    email_contents = regexprep(email_contents, '<[^<>]+>', ' ');
    
    % Handle Numbers
    % Look for one or more characters between 0-9
    email_contents = regexprep(email_contents, '[0-9]+', 'number');
    
    % Handle URLS
    % Look for strings starting with http:// or https://
    email_contents = regexprep(email_contents, ...
                               '(http|https)://[^s]*', 'httpaddr');
    
    % Handle Email Addresses
    % Look for strings with @ in the middle
    email_contents = regexprep(email_contents, '[^s]+@[^s]+', 'emailaddr');
    
    % Handle $ sign
    email_contents = regexprep(email_contents, '[$]+', 'dollar');
    
    
    % ========================== Tokenize Email ===========================
    
    % Output the email to screen as well
    fprintf('
    ==== Processed Email ====
    
    ');
    
    % Process file
    l = 0;
    
    while ~isempty(email_contents)
    
        % Tokenize and also get rid of any punctuation
        [str, email_contents] = ...
           strtok(email_contents, ...
                  [' @$/#.-:&*+=[]?!(){},''">_<;%' char(10) char(13)]);
       
        % Remove any non alphanumeric characters
        str = regexprep(str, '[^a-zA-Z0-9]', '');
    
        % Stem the word 
        % (the porterStemmer sometimes has issues, so we use a try catch block)
        try str = porterStemmer(strtrim(str)); 
        catch str = ''; continue;
        end;
    
        % Skip the word if it is too short
        if length(str) < 1
           continue;
        end
    
        % Look up the word in the dictionary and add to word_indices if
        % found
        % ====================== YOUR CODE HERE ======================
        % Instructions: Fill in this function to add the index of str to
        %               word_indices if it is in the vocabulary. At this point
        %               of the code, you have a stemmed word from the email in
        %               the variable str. You should look up str in the
        %               vocabulary list (vocabList). If a match exists, you
        %               should add the index of the word to the word_indices
        %               vector. Concretely, if str = 'action', then you should
        %               look up the vocabulary list to find where in vocabList
        %               'action' appears. For example, if vocabList{18} =
        %               'action', then, you should add 18 to the word_indices 
        %               vector (e.g., word_indices = [word_indices ; 18]; ).
        % 
        % Note: vocabList{idx} returns a the word with index idx in the
        %       vocabulary list.
        % 
        % Note: You can use strcmp(str1, str2) to compare two strings (str1 and
        %       str2). It will return 1 only if the two strings are equivalent.
        %
    
    
        for idx=1:length(vocabList),
          if(strcmp(vocabList{idx},str)==1)
             word_indices=[word_indices;idx];
          end 
        endfor
    
    
    
    
    
    
    
        % =============================================================
    
    
        % Print to screen, ensuring that the output lines are not too long
        if (l + length(str) + 1) > 78
            fprintf('
    ');
            l = 0;
        end
        fprintf('%s ', str);
        l = l + length(str) + 1;
    
    end
    
    % Print footer
    fprintf('
    
    =========================
    ');
    
    end
    

      

    4.emailFeatures

    function x = emailFeatures(word_indices)
    %EMAILFEATURES takes in a word_indices vector and produces a feature vector
    %from the word indices
    %   x = EMAILFEATURES(word_indices) takes in a word_indices vector and 
    %   produces a feature vector from the word indices. 
    
    % Total number of words in the dictionary
    n = 1899;
    
    % You need to return the following variables correctly.
    x = zeros(n, 1);
    
    % ====================== YOUR CODE HERE ======================
    % Instructions: Fill in this function to return a feature vector for the
    %               given email (word_indices). To help make it easier to 
    %               process the emails, we have have already pre-processed each
    %               email and converted each word in the email into an index in
    %               a fixed dictionary (of 1899 words). The variable
    %               word_indices contains the list of indices of the words
    %               which occur in one email.
    % 
    %               Concretely, if an email has the text:
    %
    %                  The quick brown fox jumped over the lazy dog.
    %
    %               Then, the word_indices vector for this text might look 
    %               like:
    %               
    %                   60  100   33   44   10     53  60  58   5
    %
    %               where, we have mapped each word onto a number, for example:
    %
    %                   the   -- 60
    %                   quick -- 100
    %                   ...
    %
    %              (note: the above numbers are just an example and are not the
    %               actual mappings).
    %
    %              Your task is take one such word_indices vector and construct
    %              a binary feature vector that indicates whether a particular
    %              word occurs in the email. That is, x(i) = 1 when word i
    %              is present in the email. Concretely, if the word 'the' (say,
    %              index 60) appears in the email, then x(60) = 1. The feature
    %              vector should look like:
    %
    %              x = [ 0 0 0 0 1 0 0 0 ... 0 0 0 0 1 ... 0 0 0 1 0 ..];
    %
    %
    
    
    
         for i=1:length(word_indices),
           x(word_indices(i))=1;
         endfor
    
    
    
    
    % =========================================================================
        
    
    end
    

      

  • 相关阅读:
    Java io流 之file类(文件和文件夹)
    异常处理
    封装
    面向对象与类
    包与模块的使用
    模块
    递归函数
    迭代器
    装饰器
    函数基础2
  • 原文地址:https://www.cnblogs.com/zxyqzy/p/10712242.html
Copyright © 2011-2022 走看看