具体步骤:
①导入相关扩展包
from sklearn.model_selection import train_test_split # 划分数据集 from sklearn.feature_extraction import DictVectorizer #字典特征值提取 from sklearn.tree import DecisionTreeClassifier # 决策树 from sklearn.tree import export_graphviz # 决策树可视化 import pandas as pd
②获取数据
titanic=pd.read_csv("./train.csv")
③筛选特征值和目标值
x=titanic[["Pclass","Age","Sex"]] #特征值 y=titanic["Survived"] #目标值
特征值:
目标值:
④转化为字典
x=x.to_dict(orient="records")
转化结果:
⑤字典特征值抽取
transfer=DictVectorizer() x_train=transfer.fit_transform(x_train) x_test=transfer.transform(x_test)
⑥决策树预估器(estimator)
estimator = DecisionTreeClassifier(criterion="entropy") # criterion默认为'gini'系数,也可选择信息增益熵'entropy' estimator.fit(x_train, y_train) # 调用fit()方法进行训练,()内为训练集的特征值与目标值
⑦模型评估
方法一:直接对比真实值和预测值
y_predict = estimator.predict(x_test) # 传入测试集特征值,预测所给测试集的目标值 print("y_predict: ", y_predict) print("直接对比真实值和预测值: ", y_test == y_predict)
方法二:计算准确率
score = estimator.score(x_test, y_test) # 传入测试集的特征值和目标值
⑧决策树可视化
export_graphviz(estimator, out_file="titanic_tree.dot", feature_names=transfer.get_feature_names())
主要代码:
def titanic_demo(): # 1.获取数据 titanic=pd.read_csv("./train.csv") # 2.筛选特征值和目标值 x=titanic[["Pclass","Age","Sex"]] #特征值 y=titanic["Survived"] #目标值 # print(x.head()) # print(y.head()) # 3.数据处理(缺失值处理,特征值——>字典类型) #缺失值处理 x["Age"].fillna(x["Age"].mean(),inplace=True) # print(x) #转换为字典 x=x.to_dict(orient="records") # print(x) # 4.划分数据集 x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=22) # 5.字典特征抽取 transfer=DictVectorizer() x_train=transfer.fit_transform(x_train) x_test=transfer.transform(x_test) # 6.决策树预估器(estimator) estimator = DecisionTreeClassifier(criterion="entropy") # criterion默认为'gini'系数,也可选择信息增益熵'entropy' estimator.fit(x_train, y_train) # 调用fit()方法进行训练,()内为训练集的特征值与目标值 # 7.模型评估 # 方法一:直接对比真实值和预测值 y_predict = estimator.predict(x_test) # 传入测试集特征值,预测所给测试集的目标值 print("y_predict: ", y_predict) print("直接对比真实值和预测值: ", y_test == y_predict) # 方法二:计算准确率 score = estimator.score(x_test, y_test) # 传入测试集的特征值和目标值 print("准确率为: ", score) # 8.决策树可视化 export_graphviz(estimator, out_file="titanic_tree.dot", feature_names=transfer.get_feature_names()) return None
运行结果:
可视化结果(因图规模过大导致截图展示不完整):