http://poj.org/problem?id=3660
Description
N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.
The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will always beat cow B.
Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.
Input
* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B
Output
* Line 1: A single integer representing the number of cows whose ranks can be determined
Sample Input
5 5 4 3 4 2 3 2 1 2 2 5
Sample Output
2
题意分析:
n头牛比赛,m个结果,每个结果a b代表a胜过b,求可以确定名次的有多少。
解题思路:
最开始我以为是拓扑排序,但是这样只能判断名次最高的几个和名次最低的几个,后来知道如果一个奶牛和其他所有奶牛的关系都确定了,那么它的位置就是一定的了。
先Floyd跑一边最短路,再判断一只奶牛是否和其他所有奶牛都有关系,即判断两者之间是否有路能够到达。
#include <stdio.h>
#include <string.h>
#define N 120
int e[N][N], n, m;
int main()
{
int i, j, k, ans, u, v, sum, inf=99999999;
while(scanf("%d%d", &n, &m)!=EOF)
{
ans=0;
for(i=1; i<=n; i++)
for(j=1; j<=n; j++)
if(i==j)
e[i][j]=0;
else
e[i][j]=inf;
for(i=1; i<=m; i++)
{
scanf("%d%d", &u, &v);
e[u][v]=1;
}
for(k=1; k<=n; k++)
for(i=1; i<=n; i++)
for(j=1; j<=n; j++)
if(e[i][k]+e[k][j]<e[i][j])
e[i][j]=e[i][k]+e[k][j];
for(i=1; i<=n; i++)
{
sum=0;
for(j=1; j<=n; j++)
if(e[i][j]!=inf || e[j][i]!=inf)
sum++;
if(sum==n)
ans++;
}
printf("%d
", ans);
}
return 0;
}