zoukankan      html  css  js  c++  java
  • 【洛谷4219】[BJOI2014]大融合(线段树分治)

    题目:

    洛谷4219

    分析:

    很明显,查询的是删掉某条边后两端点所在连通块大小的乘积。

    有加边和删边,想到LCT。但是我不会用LCT查连通块大小啊。果断弃了

    有加边和删边,还跟连通性有关,于是开始yy线段树分治做法(不知道线段树分治?推荐一个伪模板BZOJ4025二分图事实上这个链接是指向我的博客的)。把每次操作(加边或查询)看做一个时刻,一条边存在的区间就是它加入后没有被查询的时间区间的并。于是用可撤销并查集维护一下连通块大小即可。

    代码:

    #include <cstdio>
    #include <cstring>
    #include <cctype>
    #include <algorithm>
    #include <map>
    #include <cassert>
    #undef i
    #undef j
    #undef k
    #undef min
    #undef max
    #undef true
    #undef false
    #undef swap
    #undef sort
    #undef if
    #undef for
    #undef while
    #undef printf
    #undef scanf
    #undef putchar
    #undef getchar
    #define _ 0
    using namespace std;
    
    namespace zyt
    {
    	template<typename T>
    	inline bool read(T &x)
    	{
    		char c;
    		bool f = false;
    		x = 0;
    		do
    			c = getchar();
    		while (c != EOF && c != '-' && !isdigit(c));
    		if (c == EOF)
    			return false;
    		if (c == '-')
    			f = true, c = getchar();
    		do
    			x = x * 10 + c - '0', c = getchar();
    		while (isdigit(c));
    		if (f)
    			x = -x;
    		return true;
    	}
    	inline bool read(char &c)
    	{
    		do
    			c = getchar();
    		while (c != EOF && !isgraph(c));
    		return c != EOF;
    	}
    	template<typename T>
    	inline void write(T x)
    	{
    		static char buf[20];
    		char *pos = buf;
    		if (x < 0)
    			putchar('-'), x = -x;
    		do
    			*pos++ = x % 10 + '0';
    		while (x /= 10);
    		while (pos > buf)
    			putchar(*--pos);
    	}
    	typedef long long ll;
    	const int N = 1e5 + 10, B = 17, QUERY = 0, ADD = 1;
    	int n, q;
    	ll ans[N];
    	struct node
    	{
    		bool type;
    		int x, y;
    	}arr[N];
    	namespace UFS
    	{
    		int fa[N], rk[N], size[N], top;
    		struct node
    		{
    			int x, y, fax, rky, sizey;
    		}stack[N];
    		void init(const int n)
    		{
    			for (int i = 1; i <= n; i++)
    				fa[i] = i, rk[i] = size[i] = 1;
    		}
    		int f(const int u)
    		{
    			return fa[u] == u ? u : f(fa[u]);
    		}
    		bool merge(const int u, const int v)
    		{
    			int x = f(u), y = f(v);
    			if (x == y)
    				return false;
    			if (rk[x] > rk[y])
    				swap(x, y);
    			stack[top++] = (node){x, y, fa[x], rk[y], size[y]};
    			fa[x] = y, size[y] += size[x];
    			if (rk[x] == rk[y])
    				++rk[y];
    			return true;
    		}
    		int query(const int u)
    		{
    			assert(f(u) < N);
    			return size[f(u)];
    		}
    		void undo(const int bck)
    		{
    			while (top > bck)
    			{
    				--top;
    				int x = stack[top].x, y = stack[top].y;
    				assert(x < N && y < N);
    				fa[x] = stack[top].fax;
    				rk[y] = stack[top].rky;
    				size[y] = stack[top].sizey;
    			}
    		}
    	}
    	namespace Segment_Tree
    	{
    		struct edge
    		{
    			int x, y, next;
    		}e[N * (B + 1)];
    		int head[1 << (B + 1) | 11], ecnt;
    		inline void init()
    		{
    			memset(head, -1, sizeof(head));
    		}
    		inline void add(const int a, const int b, const int c)
    		{
    			e[ecnt] = (edge){b, c, head[a]}, head[a] = ecnt++;
    		}
    		inline void insert(const int rot, const int lt, const int rt, const int ls, const int rs, const int x, const int y)
    		{
    			if (ls <= lt && rt <= rs)
    			{
    				add(rot, x, y);
    				return;
    			}
    			int mid = (lt + rt) >> 1;
    			if (ls <= mid)
    				insert(rot << 1, lt, mid, ls, rs, x, y);
    			if (rs > mid)
    				insert(rot << 1 | 1, mid + 1, rt, ls, rs, x, y);
    		}
    		inline void solve(const int rot, const int lt, const int rt)
    		{
    			int bck = UFS::top;
    			for (int i = head[rot]; ~i; i = e[i].next)
    				UFS::merge(e[i].x, e[i].y);
    			if (lt == rt)
    			{
    				if (arr[lt].type == QUERY)
    					ans[lt] = (ll)UFS::query(arr[lt].x) * UFS::query(arr[lt].y);
    				UFS::undo(bck);
    				return;
    			}
    			int mid = (lt + rt) >> 1;
    			solve(rot << 1, lt, mid);
    			solve(rot << 1 | 1, mid + 1, rt);
    			UFS::undo(bck);
    		}
    	}
    	map<pair<int, int>, int> lastins;
    	int work()
    	{
    		read(n), read(q);
    		UFS::init(n);
    		Segment_Tree::init();
    		for (int i = 1; i <= q; i++)
    		{
    			char opt;
    			read(opt), read(arr[i].x), read(arr[i].y);
    			if (arr[i].x > arr[i].y)
    				swap(arr[i].x, arr[i].y);
    			arr[i].type = (opt == 'Q' ? QUERY : ADD);
    			pair<int, int> p = make_pair(arr[i].x, arr[i].y);
    			if (arr[i].type == ADD)
    				lastins[p] = i;
    			else
    			{
    				Segment_Tree::insert(1, 1, q, lastins[p], i - 1, p.first, p.second);
    				lastins[p] = i + 1;
    			}
    		}
    		for (map<pair<int, int>, int>::iterator it = lastins.begin(); it != lastins.end(); it++)
    			if (it->second <= q)
    				Segment_Tree::insert(1, 1, q, it->second, q, it->first.first, it->first.second);
    		Segment_Tree::solve(1, 1, q);
    		for (int i = 1; i <= q; i++)
    			if (arr[i].type == QUERY)
    				write(ans[i]), putchar('
    ');
    		return (0^_^0);
    	}
    }
    int main()
    {
    	return zyt::work();
    }
    
  • 相关阅读:
    HTML5与HTML的区别
    0918练习整理
    0904 未来展望
    ajax弹出窗口
    AjAX请求后台,无刷新更新页面
    Jquery通过Ajax方式来提交Form表单
    php的socket通信
    次短路[SPFA]
    [Usaco2008 Open]Roads Around The Farm分岔路口[水题]
    [Usaco2008 Nov]Guarding the Farm 保卫牧场[DFS]
  • 原文地址:https://www.cnblogs.com/zyt1253679098/p/10265586.html
Copyright © 2011-2022 走看看