zoukankan      html  css  js  c++  java
  • Python求两个有序数组的中位数的几种方法

    求两个有序数组的中位数的几种方法

    思路一:

    def median_1(A, B):
        # 思路一: 先组合成一个有序数列,再取中位数
        # 时间复杂度O(m+n)
        len_A = len(A)
        len_B = len(B)
        C = []
        if len_A == len_B == 0:
            raise ValueError
        i = j = 0
        for k in range(0, len_A + len_B):
            if j == len_B or (i < len_A and A[i] <= B[j]):
                C.append(A[i])
                i += 1
            else:
                C.append(B[j])
                j += 1
        half = (len_A + len_B) // 2
        if (len_A + len_B) % 2 == 0:
            return (C[half - 1] + C[half]) / 2
        else:
            return C[half]
    

    思路二:

    def median_2(A, B):
        # 思路二: 没有必要完全产生出第三个列表,我们在一开始就可以知道需要取的索引,且可以用变量记录而不新建列表
        # 时间复杂度: O((m+n)/2) => O(m+n)
        len_A = len(A)
        len_B = len(B)
        if len_A == len_B == 0:
            raise ValueError
        half = (len_A + len_B) // 2 + 1
        pre = cur = i = j = 0
        for k in range(0, half):
            if j == len_B or (i < len_A and A[i] <= B[j]):
                pre = cur
                cur = A[i]
                i += 1
            else:
                pre = cur
                cur = B[j]
                j += 1
        if (len_A + len_B) % 2 == 0:
            return (pre + cur) / 2
        else:
            return cur
    

    思路三:

    def median_3(A, B, k=None):
        # 思路三: 求中位数的问题可以看作是求第(m+n)/2小的数的问题.如果是偶数个,则是第(m+n)/2小和第(m+n)/2+1小的均值.
        # 时间复杂度: O(log(m+n))
        m, n = len(A), len(B)
        if m > n:
            n, m, A, B = m, n, B, A
        if n == 0:
            raise ValueError
        if k == None:
            k1 = (m + n + 1) // 2
            k2 = (m + n + 2) // 2
            return (median_3(A, B, k1) + median_3(A, B, k2)) / 2
        if m == 0:
            return B[k - 1]
        if k == 1:
            return A[0] if A[0] <= B[0] else B[0]
        half = k // 2
        index_A = min(m - 1, half - 1)
        index_B = min(n - 1, half - 1)
        if A[index_A] <= B[index_B]:
            return median_3(A[index_A + 1:], B, k - index_A - 1)
        else:
            return median_3(A, B[index_B + 1:], k - index_B - 1)
    
    

    思路四:

    def median_4(A, B):
        # 思路四:二分法, i = 0 ~ m, j = (m + n + 1) / 2 - i, 需保证j>=0, 即n>=m
        # 时间复杂度: O(log(min(m,n)))
        m, n = len(A), len(B)
        if m > n:
            m, n, A, B = n, m, B, A
        if n == 0:
            raise ValueError
        i_min = 0
        i_max = m
        half = (m + n + 1) // 2
        while i_min <= i_max:
            i = (i_min + i_max) // 2
            j = half - i
            if i > 0 and A[i - 1] > B[j]:
                # i太大了
                i_max = i - 1
            elif i < m and A[i] < B[j - 1]:
                # i太小了
                i_min = i + 1
            else:
                if i == 0:
                    max_of_left = B[half - 1]
                elif j == 0:
                    max_of_left = A[half - 1]
                else:
                    max_of_left = max(A[i - 1], B[j - 1])
                if (m + n) % 2 == 1:
                    return max_of_left
                if i == m:
                    min_of_right = B[j]
                elif j == n:
                    min_of_right = A[i]
                else:
                    min_of_right = min(A[i], B[j])
                return (max_of_left + min_of_right) / 2
    
  • 相关阅读:
    收藏:详解交换机基础知识
    Linux Used内存到底哪里去了?
    TCP三次握手和四次挥手以及11种状态
    操作系统深度研究(75页PPT)
    命令行版的斗地主你玩过没?
    10大黑客专用的 Linux 操作系统
    (四)Linux命令大全:帮助命令
    (三)Linux命令大全:文件搜索命令
    (二)Linux命令大全:权限管理命令
    (一)Linux命令大全:文件处理命令
  • 原文地址:https://www.cnblogs.com/zyyhxbs/p/12770689.html
Copyright © 2011-2022 走看看