Time Limit: 2000MS | Memory Limit: 131072K | |
Total Submissions: 6195 | Accepted: 1969 |
Description
Ginny’s birthday is coming soon. Harry Potter is preparing a birthday present for his new girlfriend. The present is a magic bracelet which consists of n magic beads. The are m kinds of different magic beads. Each kind of beads has its unique characteristic. Stringing many beads together a beautiful circular magic bracelet will be made. As Harry Potter’s friend Hermione has pointed out, beads of certain pairs of kinds will interact with each other and explode, Harry Potter must be very careful to make sure that beads of these pairs are not stringed next to each other.
There infinite beads of each kind. How many different bracelets can Harry make if repetitions produced by rotation around the center of the bracelet are neglected? Find the answer taken modulo 9973.
Input
The first line of the input contains the number of test cases.
Each test cases starts with a line containing three integers n (1 ≤ n ≤ 109, gcd(n, 9973) = 1), m (1 ≤ m ≤ 10), k (1 ≤ k ≤ m(m − 1) ⁄ 2). The next k lines each contain two integers a and b (1 ≤ a, b ≤ m), indicating beads of kind a cannot be stringed to beads of kind b.
Output
Output the answer of each test case on a separate line.
Sample Input
4
3 2 0
3 2 1
1 2
3 2 2
1 1
1 2
3 2 3
1 1
1 2
2 2
Sample Output
4
2
1
0
Source
1 #include<iostream> 2 #include<cstring> 3 #include<cstdio> 4 #include<map> 5 #include<set> 6 #include<vector> 7 #include<algorithm> 8 #include<cmath> 9 using namespace std; 10 #define LL long long 11 #define PI acos(-1.0) 12 LL mod=9973; 13 LL N,M,K; 14 vector<LL>prime; 15 bool isp[33333]; 16 struct matrix{ 17 LL a[11][11]; 18 matrix(){ 19 memset(a,0,sizeof(a)); 20 } 21 matrix operator*(matrix &tmp){ 22 matrix ans; 23 for(int i=1;i<=M;++i){ 24 for(int j=1;j<=M;++j){ 25 for(int k=1;k<=M;++k){ 26 (ans.a[i][j]+=a[i][k]*tmp.a[k][j]); 27 } 28 ans.a[i][j]%=mod; 29 } 30 } 31 return ans; 32 } 33 }A,U; 34 matrix qpow(matrix A,int b){ 35 matrix ans=U; 36 while(b){ 37 if(b&1) ans=ans*A; 38 A=A*A; 39 b>>=1; 40 } 41 return ans; 42 } 43 void init(){ 44 for(int i=2;i<33333;++i){ 45 if(!isp[i]) prime.push_back(i); 46 for(int j=0;j<prime.size()&&prime[j]*i<33333;++j){ 47 isp[i*prime[j]]=1; 48 if(i%prime[j]==0)break; 49 } 50 } 51 } 52 LL phi(int n){ 53 LL ans=n,m=sqrt(n+0.5); 54 for(int i=0;prime[i]<=m;++i){ 55 if(n%prime[i]==0){ 56 ans=ans/prime[i]*(prime[i]-1); 57 while(n%prime[i]==0)n/=prime[i]; 58 } 59 } 60 if(n>1) ans=ans/n*(n-1); 61 return ans%mod; 62 } 63 LL _qpow(LL a,LL b){ 64 LL r=1; 65 while(b){ 66 if(b&1) r=r*a%mod; 67 a=a*a%mod; 68 b>>=1; 69 } 70 return r; 71 } 72 LL solve(int n){ 73 matrix res=qpow(A,n); 74 LL ans=0; 75 for(int i=1;i<=M;++i) ans+=res.a[i][i]; 76 return ans%mod; 77 } 78 int main() 79 { 80 int t,i,j,k,u,v; 81 init(); 82 for(i=0;i<11;++i)U.a[i][i]=1; 83 scanf("%d",&t); 84 while(t--){ 85 scanf("%lld%lld%lld",&N,&M,&K); 86 for(i=1;i<=M;++i) 87 for(j=1;j<=M;++j)A.a[i][j]=1; 88 for(i=1;i<=K;++i){ 89 scanf("%d%d",&u,&v); 90 A.a[u][v]=A.a[v][u]=0; 91 } 92 LL ans=0; 93 for(i=1;i*i<=N;++i){ 94 if(N%i==0){ 95 ans=(ans+phi(N/i)*solve(i)%mod)%mod; 96 if(i*i!=N) ans=(ans+phi(i)*solve(N/i)%mod)%mod; 97 } 98 } 99 ans=ans*_qpow(N,mod-2)%mod; 100 printf("%lld ",ans); 101 } 102 return 0; 103 }