zoukankan      html  css  js  c++  java
  • 使用次梯度法求解lasso

    Using subgradient method to solve lasso problem

    The problem is to solve:

    [underset{eta}{operatorname{minimize}}left{frac{1}{2 N} sum_{i=1}^{N}left(y_{i}-z_{i} eta ight)^{2}+lambda|eta| ight} ]

    Subgradient Optimality:

    [0 in partialleft{frac{1}{2 N} sum_{i=1}^{N}left(y_{i}-z_{i} eta ight)^{2}+lambda|eta| ight} ]

    [Longleftrightarrow 0 in-frac{1}{N}sum_{i=1}^{N}z_i(y_i-z_ieta)+lambda partial|eta| ]

    Denote (v=partial|eta|),according to the definition of subgradient, we have

    [v inleft{egin{array}{ll} {1} & ext { if } eta>0 \ {-1} & ext { if } eta<0 \ {[-1,1]} & ext { if } eta=0 end{array} ight. ]

    The subgradient optimality condition is

    [frac{1}{N}sum_{i=1}^{N}z_i(y_i-z_ieta)=lambda v ]

    • if (eta>0, v=1)

      [frac{1}{N}sum_{i=1}^{N}z_i(y_i-z_ieta)=lambda ]

      we can solve (eta=frac{sum z_iy_i-lambda N}{sum z_i^2})

      Since zi is standardized,(sum z_i^2=N),

      [eta=frac{sum z_iy_i-lambda N}N\=frac{1}{N}langlemathbf{z}, mathbf{y} angle-lambda ]

    • if (eta<0), (v=-1)

      [frac{1}{N}sum_{i=1}^{N}z_i(y_i-z_ieta)=-lambda ]

      we can solve (eta=frac{sum z_iy_i+lambda N}{sum z_i^2})

      Since zi is standardized,(sum z_i^2=N),

      [eta=frac{sum z_iy_i+lambda N}N\=frac{1}{N}langlemathbf{z}, mathbf{y} angle+lambda ]

    • if (eta=0,|v|le1)

      [|frac{1}{N}sum_{i=1}^{N}z_i(y_i-z_ieta)|lelambda ]

      Since (eta=0,) we have (frac{1}{N}|langlemathbf{z}, mathbf{y} angle| leq lambda)

    In conclusion, we have:

    [widehat{eta}=left{egin{array}{ll} frac{1}{N}langlemathbf{z}, mathbf{y} angle-lambda & ext { if } frac{1}{N}langlemathbf{z}, mathbf{y} angle quad>lambda \ 0 & ext { if } frac{1}{N}|langlemathbf{z}, mathbf{y} angle| leq lambda \ frac{1}{N}langlemathbf{z}, mathbf{y} angle+lambda & ext { if } frac{1}{N}langlemathbf{z}, mathbf{y} angle<-lambda end{array} ight.]

    i.e.

    [widehat{eta}=mathcal{S}_{lambda}left(frac{1}{N}langlemathbf{z}, mathbf{y} angle ight) ]

    Where $$mathcal{S}_{lambda}(x)=operatorname{sign}(x)(|x|-lambda)$$

    本文为跑得飞快的凤凰花原创,如需转载,请标明出处~
  • 相关阅读:
    对话框风格的窗口
    对话框
    Notification的功能与用法
    滚动视图(ScrollView)的功能与用法
    css----overflow(布局)
    css----display(显示) 与 Visibility(可见性)
    css----position(定位)
    Vue.js----router(路由)
    HTTP协议-Cookie和Session详解
    MySql 复制表命令
  • 原文地址:https://www.cnblogs.com/zzqingwenn/p/12864268.html
Copyright © 2011-2022 走看看