zoukankan      html  css  js  c++  java
  • The Balance(poj2142)

    The Balance
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 5452   Accepted: 2380

    Description

    Ms. Iyo Kiffa-Australis has a balance and only two kinds of weights to measure a dose of medicine. For example, to measure 200mg of aspirin using 300mg weights and 700mg weights, she can put one 700mg weight on the side of the medicine and three 300mg weights on the opposite side (Figure 1). Although she could put four 300mg weights on the medicine side and two 700mg weights on the other (Figure 2), she would not choose this solution because it is less convenient to use more weights.
    You are asked to help her by calculating how many weights are required.

    Input

    The input is a sequence of datasets. A dataset is a line containing three positive integers a, b, and d separated by a space. The following relations hold: a != b, a <= 10000, b <= 10000, and d <= 50000. You may assume that it is possible to measure d mg using a combination of a mg and b mg weights. In other words, you need not consider "no solution" cases.
    The end of the input is indicated by a line containing three zeros separated by a space. It is not a dataset.

    Output

    The output should be composed of lines, each corresponding to an input dataset (a, b, d). An output line should contain two nonnegative integers x and y separated by a space. They should satisfy the following three conditions.
    • You can measure dmg using x many amg weights and y many bmg weights.
    • The total number of weights (x + y) is the smallest among those pairs of nonnegative integers satisfying the previous condition.
    • The total mass of weights (ax + by) is the smallest among those pairs of nonnegative integers satisfying the previous two conditions.

    No extra characters (e.g. extra spaces) should appear in the output.

    Sample Input

    700 300 200
    500 200 300
    500 200 500
    275 110 330
    275 110 385
    648 375 4002
    3 1 10000
    0 0 0

    Sample Output

    1 3
    1 1
    1 0
    0 3
    1 1
    49 74
    3333 1
    思路:扩展欧几里德。
    首先,如果没有取最小那个条件限制,这就是一道裸的扩展欧几里德。那么考虑那个限制条件。我们用欧几里德求出x,y后,我们先求
    x的最小正解,然后代入方程求的y,如果y是正的,假设x要增大,那么y就要减小,当y还是>0由于这时两种砝码在同侧,所以我们可以
    考虑下贪心,也就是优先取质量重的取,那么要么就是x取最小正解时要么取y是最小正解时(在x,y都为正的前提下)。那么如果当y<0
    原来两个取正肯定要比一个取正一个取负的总和小。同理先取y为最小正,根据(ax+by=c)中x,y的等价性我们可以同样分析y。
    那么综合这两种情况我们可以得出这样的结论(x+y)最小要么在x在最下正时取要么在y为最小正时取。
     1 #include<stdio.h>
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<math.h>
     5 #include<stdlib.h>
     6 #include<string.h>
     7 using namespace std;
     8 typedef long long LL;
     9 const long long N=1e6+3;
    10 long long MM[1000005];
    11 long long quick(long long n,long m);
    12 pair<LL,LL>P(long long n,long long m);
    13 long long gcd(long long n,long long m);
    14 int main(void)
    15 {
    16         long long i,j,k,p,q;
    17         while(scanf("%lld %lld %lld",&k,&p,&q),p!=0&k!=0&q!=0)
    18         {
    19                 long long zz=gcd(k,p);
    20                 k/=zz;
    21                 p/=zz;
    22                 q/=zz;
    23                 pair<LL,LL>SS=P(k,p);
    24                 long long x=SS.first;
    25                 x*=q;
    26                 x=(x%p+p)%p;
    27                 long long y=fabs(1.0*(q-x*k)/p);
    28                 long long z=SS.second;
    29                 z*=q;
    30                 z=(z%k+k)%k;
    31                 long long xx=fabs(1.0*(q-z*p)/k);
    32                 if(xx+z<y+x)
    33                         printf("%lld %lld
    ",xx,z);
    34                 else if(xx+z==y+x)
    35                 {
    36                         long long cc=x*k+y*p;
    37                         long long zz=z*p+xx*k;
    38                         if(xx<zz)
    39                                 printf("%lld %lld
    ",xx,z);
    40                         else printf("%lld %lld
    ",x,y);
    41                 }
    42                 else printf("%lld %lld
    ",x,y);
    43         }
    44         return 0;
    45 }
    46 
    47 long long quick(long long n,long m)
    48 {
    49         long long k=1;
    50         while(m)
    51         {
    52                 if(m&1)
    53                 {
    54                         k=(k%N*n%N)%N;
    55                 }
    56                 n=n*n%N;
    57                 m/=2;
    58         }
    59         return k;
    60 }
    61 long long gcd(long long n,long long m)
    62 {
    63         if(m==0)
    64                 return n;
    65         if(n%m==0)
    66         {
    67                 return m;
    68         }
    69         else return gcd(m,n%m);
    70 }
    71 pair<LL,LL>P(long long n,long long m)
    72 {
    73         if(m==0)
    74         {
    75                 pair<LL,LL>K=make_pair(1,0);
    76                 return K;
    77         }
    78         else
    79         {
    80                 pair<LL,LL>L=P(m,n%m);
    81                 pair<LL,LL>S;
    82                 S.first=L.second;
    83                 S.second=L.first-(n/m)*L.second;
    84                 return S;
    85         }
    86 }
    
    
    油!油!you@
  • 相关阅读:
    C#学习
    1.计算机的硬件
    C++ bitset——高端压位卡常题必备STL
    Aragorn's Story
    Sql Server DTS使用
    Django的SQL注意事项(以及时间戳转换日期格式)
    HTML中复选框的使用方法
    Http常见状态码
    scrapy yield 回调函数不执行解决方案
    jsonp跨域请求
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/5343851.html
Copyright © 2011-2022 走看看