zoukankan      html  css  js  c++  java
  • 1091. Tmutarakan Exams

    1091. Tmutarakan Exams

    Time limit: 1.0 second
    Memory limit: 64 MB
    University of New Tmutarakan trains the first-class specialists in mental arithmetic. To enter the University you should master arithmetic perfectly. One of the entrance exams at the Divisibility Department is the following. Examinees are asked to find K different numbers that have a common divisor greater than 1. All numbers in each set should not exceed a given number S. The numbers K and S are announced at the beginning of the exam. To exclude copying (the Department is the most prestigious in the town!) each set of numbers is credited only once (to the person who submitted it first).
    Last year these numbers were K=25 and S=49 and, unfortunately, nobody passed the exam. Moreover, it was proved later by the best minds of the Department that there do not exist sets of numbers with the required properties. To avoid embarrassment this year, the dean asked for your help. You should find the number of sets of K different numbers, each of the numbers not exceeding S, which have a common divisor greater than 1. Of course, the number of such sets equals the maximal possible number of new students of the Department.

    Input

    The input contains numbers K and S (2 ≤ K ≤ S ≤ 50).

    Output

    You should output the maximal possible number of the Department's new students if this number does not exceed 10000 which is the maximal capacity of the Department, otherwise you should output 10000.

    Sample

    inputoutput
    3 10
    
    11
    
    Problem Author: Stanislav Vasilyev
    Problem Source: USU Open Collegiate Programming Contest March'2001 Senior Session

    © 2000–2016 Timus Online Judge Team. All rights reserved.

    思路:和http://www.cnblogs.com/zzuli2sjy/p/5467008.html一样;

      1 #include<stdio.h>
      2 #include<string.h>
      3 #include<iostream>
      4 #include<algorithm>
      5 #include<queue>
      6 using namespace std;
      7 typedef long long LL;
      8 bool prime[100];
      9 int ans[100];
     10 int  coutt[10000];
     11 LL dp[60][60];
     12 int ask[100];
     13 int id[100];
     14 queue<int>que;
     15 int main(void)
     16 {
     17         int i,j,k,p,q;
     18         dp[0][0]=1;
     19         dp[1][0]=1;
     20         dp[1][1]=1;
     21         for(i=2; i<=60; i++)
     22         {
     23                 for(j=0; j<=60; j++)
     24                 {
     25                         if(j==0||i==j)
     26                         {
     27                                 dp[i][j]=1;
     28                         }
     29                         else dp[i][j]=dp[i-1][j-1]+dp[i-1][j];
     30                 }
     31         }
     32         for(i=2; i<=10; i++)
     33         {
     34                 if(!prime[i])
     35                 {
     36                         for(j=i; i*j<=50; j++)
     37                         {
     38                                 prime[i*j]=true;
     39                         }
     40                 }
     41         }
     42         int cnt=0;
     43         for(i=2; i<=50; i++)
     44         {
     45                 if(!prime[i])
     46                 {
     47                         ans[cnt++]=i;
     48                 }
     49         }
     50         while(scanf("%d %d",&p,&q)!=EOF)
     51         {     int s;
     52                 memset(coutt,0,sizeof(coutt));
     53                 for(s=2; s<=q; s++)
     54                 {
     55                         int cc=s;
     56                         int flag=0;
     57                         int t=0;
     58                         while(cc>1)
     59                         {
     60                                 if(cc%ans[t]==0&&flag==0)
     61                                 {
     62                                         flag=1;
     63                                         que.push(ans[t]);
     64                                         cc/=ans[t];
     65                                 }
     66                                 else if(cc%ans[t]==0)
     67                                 {
     68                                         cc/=ans[t];
     69                                 }
     70                                 else
     71                                 {
     72                                         t++;
     73                                         flag=0;
     74                                 }
     75                         }
     76                         int vv=0;
     77                         while(!que.empty())
     78                         {
     79                                 ask[vv++]=que.front();
     80                                 que.pop();
     81                         }
     82                         for(i=1; i<=(1<<vv)-1; i++)
     83                         {
     84                                 LL sum=1;
     85                                 int dd=0;
     86                                 for(j=0; j<vv; j++)
     87                                 {
     88                                         if(i&(1<<j))
     89                                         {
     90                                                 dd++;
     91                                                 sum*=ask[j];
     92                                         }
     93                                 }
     94                                 id[sum]=dd;
     95                                 coutt[sum]++;
     96 
     97                         }
     98                 }
     99                 LL summ=0;
    100                 for(i=2; i<=50; i++)
    101                 {
    102                         if(id[i]%2&&coutt[i]>=p)
    103                         {
    104                                 summ+=dp[coutt[i]][p];
    105                         }
    106                         else if(coutt[i]>=p)summ-=dp[coutt[i]][p];
    107                 }if(summ>=10000)summ=10000;
    108                 printf("%lld
    ",summ);
    109         }
    110         return 0;
    111 }
    油!油!you@
  • 相关阅读:
    设计模式总结——程序猿武功秘籍(下一个)
    easyui datagrid显示进度条控制操作
    使用CountDownLatch和CyclicBarrier处理并发线程
    人类探索地外文明显著取得的进展
    Linux 启动过程的详细解释
    不会跳回到微博认定申请书
    unix域套接字UDP网络编程
    VS SQL 出现%CommonDir%dte80a.olb 该解决方案
    数据仓库与数据挖掘的一些基本概念
    CheckBoxPreference组件
  • 原文地址:https://www.cnblogs.com/zzuli2sjy/p/5479767.html
Copyright © 2011-2022 走看看