zoukankan      html  css  js  c++  java
  • PAT甲级——A1024 Palindromic Number

    A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.

    Non-palindromic numbers can be paired with palindromic ones via a series of operations. First, the non-palindromic number is reversed and the result is added to the original number. If the result is not a palindromic number, this is repeated until it gives a palindromic number. For example, if we start from 67, we can obtain a palindromic number in 2 steps: 67 + 76 = 143, and 143 + 341 = 484.

    Given any positive integer N, you are supposed to find its paired palindromic number and the number of steps taken to find it.

    Input Specification:

    Each input file contains one test case. Each case consists of two positive numbers N and K, where N (≤) is the initial numer and K (≤) is the maximum number of steps. The numbers are separated by a space.

    Output Specification:

    For each test case, output two numbers, one in each line. The first number is the paired palindromic number of N, and the second number is the number of steps taken to find the palindromic number. If the palindromic number is not found after K steps, just output the number obtained at the Kth step and K instead.

    Sample Input 1:

    67 3
    

    Sample Output 1:

    484
    2
    

    Sample Input 2:

    69 3
    

    Sample Output 2:

    1353
    3

     1 #include <iostream>
     2 #include <string>
     3 using namespace std;
     4 int main()
     5 {
     6     string N, str;
     7     int K, i = 0;
     8     cin >> N >> K;
     9     if (N == str.assign(N.rbegin(), N.rend()))
    10         K = 0;
    11     for (i = 1; i <= K; ++i)
    12     {
    13         str = "";
    14         int s = 0;
    15         for (int j = 0; j < N.length(); ++j)
    16         {
    17             str += (s + N[j] - '0' + N[N.length() - j - 1] - '0') % 10 + '0';
    18             s = (s + N[j] - '0' + N[N.length() - j - 1] - '0') / 10;            
    19         }
    20         if (s > 0)
    21             str += s + '0';
    22         N.assign(str.rbegin(), str.rend());
    23         if (N == str)
    24             break;
    25     }
    26     cout << N << endl;
    27     cout << (i > K ? K : i) << endl;
    28     return 0;
    29 }
  • 相关阅读:
    SpringBoot整合RabbitMQ
    RabbitMQ消息确认机制
    RabbitMQ六种队列模式-简单队列模式
    RabbitMQ六种队列模式-工作队列模式
    RabbitMQ六种队列模式-发布订阅模式
    RabbitMQ六种队列模式-路由模式
    RabbitMQ六种队列模式-主题模式
    RabbitMQ简单介绍+Windows环境安装
    SpringBoot整合ActiveMQ发送邮件
    下载缓慢文件记录,持续更新[2019-10-29]
  • 原文地址:https://www.cnblogs.com/zzw1024/p/11215971.html
Copyright © 2011-2022 走看看