zoukankan      html  css  js  c++  java
  • 内部排序算法:基数排序

    基本思想

    基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。
    基数排序可以采用两种方式:

    • LSD(Least Significant Digital):从待排序元素的最右边开始计算(如果是数字类型,即从最低位个位开始)。
    • MSD(Most Significant Digital):从待排序元素的最左边开始计算(如果是数字类型,即从最高位开始)。

    我们以LSD方式为例,从数组R[1..n]中每个元素的最低位开始处理,假设基数为radix,如果是十进制,则radix=10。基本过程如下所示:

    1. 计算R中最大的元素,求得位数最大的元素,最大位数记为distance;
    2. 对每一位round<=distance,计算R[i] % radix即可得到;
    3. 将上面计算得到的余数作为bucket编号,每个bucket中可能存放多个数组R的元素;
    4. 按照bucket编号的顺序,收集bucket中元素,就地替换数组R中元素;
    5. 重复2~4,最终数组R中的元素为有序。

    算法实现

    基数排序算法,Java实现,代码如下所示:

    01
    02
    03
    04
    05
    06
    07
    08
    09
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    public abstract class Sorter {
         public abstract void sort(int[] array);
    }
     
    public class RadixSorter extends Sorter {
         
         private int radix;
         
         public RadixSorter() {
              radix = 10;
         }
         
         @Override
         public void sort(int[] array) {
              // 数组的第一维表示可能的余数0-radix,第二维表示array中的等于该余数的元素
              // 如:十进制123的个位为3,则bucket[3][] = {123}
              int[][] bucket = new int[radix][array.length];
              int distance = getDistance(array); // 表示最大的数有多少位
              int temp = 1;
              int round = 1; // 控制键值排序依据在哪一位
              while (round <= distance) {
                   // 用来计数:数组counter[i]用来表示该位是i的数的个数
                   int[] counter = new int[radix];
                   // 将array中元素分布填充到bucket中,并进行计数
                   for (int i = 0; i < array.length; i++) {
                        int which = (array[i] / temp) % radix;
                        bucket[which][counter[which]] = array[i];
                        counter[which]++;
                   }
                   int index = 0;
                   // 根据bucket中收集到的array中的元素,根据统计计数,在array中重新排列
                   for (int i = 0; i < radix; i++) {
                        if (counter[i] != 0)
                             for (int j = 0; j < counter[i]; j++) {
                                  array[index] = bucket[i][j];
                                  index++;
                             }
                        counter[i] = 0;
                   }
                   temp *= radix;
                   round++;
              }
         }
         
         private int getDistance(int[] array) {
              int max = computeMax(array);
              int digits = 0;
              int temp = max / radix;
              while(temp != 0) {
                   digits++;
                   temp = temp / radix;
              }
              return digits + 1;
         }
         
         private int computeMax(int[] array) {
              int max = array[0];
              for(int i=1; i<array.length; i++) {
                   if(array[i]>max) {
                        max = array[i];
                   }
              }
              return max;
         }
    }

    基数排序算法,Python实现,代码如下所示:

    01
    02
    03
    04
    05
    06
    07
    08
    09
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    class Sorter:
        '''
        Abstract sorter class, which provides shared methods being used by
        subclasses.
        '''
        __metaclass__ = ABCMeta
        
        @abstractmethod  
        def sort(self, array):
            pass
     
    class RadixSorter(Sorter):
        '''
        Radix sorter
        '''
        def __init__(self):
            self.radix = 10
            
        def sort(self, array):
            length = len(array)
            which_round = 1
            bucket = [[0 for col in range(length)] for row in range(self.radix)]
            distance = self.__get_distance(array)
            temp = 1
            while which_round<=distance:
                counter = [0 for x in range(self.radix)]
                for i in range(length):
                    which = (array[i] // temp) % self.radix
                    bucket[which][counter[which]] = array[i]
                    counter[which] += 1
                index = 0
                for i in range(self.radix):
                    if counter[i]!=0:
                        for j in range(counter[i]):
                            array[index] = bucket[i][j]
                            index += 1
                temp *= self.radix
                which_round += 1
                
     
        def __get_distance(self, array):
            max_elem = self.__get_max(array)
            digits = 0
            temp = max_elem // self.radix
            while temp != 0:
                digits += 1
                temp //= self.radix
            return digits + 1
        
        def __get_max(self, array):
            max_elem = array[0]
            for x in range(1, len(array)):
                if array[x]>max_elem:
                    max_elem = array[x]
            return max_elem

    排序过程

    假设待排序数组为array = {94,12,34,76,26,9,0,37,55,76,37,5,68,83,90,37,12,65,76,49},数组大小为20,我们以该数组为例,
    最大的数组元素的位数为2,所以需要进行2轮映射(映射到对应的桶中),执行基数排序的具体过程,如下所示:

    • 数组原始顺序

    数组的原始顺序,如下图所示:
    radixsorter-array-original
    数组中存在的相同的元素(同一个待排序的数字出现大于1次),我们使用不同的背景颜色来区分(红色背景表示第二次出现,靛青色表示第三次出现),如果一个元素只出现过一次,则我们就使用一种固定的颜色(浅绿色)表示。

    根据数组元素个位数字将数组中元素映射到对应的桶中(bucket)

    我们使用的是十进制,基数(Radix)自然是10,根据数组元素个位数的,应该映射到10个桶中,映射后的结果,如图所示:
    radixsorter-bucket-1
    在映射到桶的过程中,从左到右扫描原始数组。因为映射到同一个桶中的元素可能存在多个,最多为整个数组的长度,所以在同一个桶中,要保持进入桶中的元素的先后顺序(先进的排在左侧,后进的排在右侧)。

    • 收集桶中元素,并在原始数组中原地替换,使数组中元素顺序重新分布

    扫面前面已经映射到各个桶中的元素,满足这样的顺序:先扫描编号最小的桶,桶中如果存在多个元素,必须按照从左到右的顺序。这样,将得到的数组元素重新分布,得到一个元素位置重新分布的数组,如图所示:
    radixsorter-array-after-collecting-1
    这时,可以看到元素实际上是按照个位的数字进行了排序,但是基于整个元素来说并不是有序的。

    • 根据数组元素十位数字将数组中元素映射到对应的桶中(bucket)

    这次映射的原则和过程,与前面类似,不同的是,这次扫描的数组是经过个位数字处理重新分布后的新数组,映射后桶内的状态,如图所示:
    radixsorter-bucket-2

    • 收集桶中元素,并在原始数组中原地替换,使数组中元素顺序重新分布

    和前面收集方法类似,得到的数组及其顺序,如图所示:
    radixsorter-array-after-collecting-2
    我们可以看到,经过两轮映射和收集过程,数组已经变成有序了,排序结束。

    算法分析

    • 时间复杂度

    设待排序的数组R[1..n],数组中最大的数是d位数,基数为r(如基数为10,即10进制,最大有10种可能,即最多需要10个桶来映射数组元素)。处理一位数,需要将数组元素映射到r个桶中,映射完成后还需要收集,相当于遍历数组一遍,最多元素书为n,则时间复杂度为O(n+r)。所以,总的时间复杂度为O(d*(n+r))。

    • 空间复杂度

    设待排序的数组R[1..n],数组中最大的数是d位数,基数为r。基数排序过程中,用到一个计数器数组,长度为r,还用到一个r*n的二位数组来做为桶,所以空间复杂度为O(r*n)。

    • 排序稳定性

    通过上面的排序过程,我们可以看到,每一轮映射和收集操作,都保持从左到右的顺序进行,如果出现相同的元素,则保持他们在原始数组中的顺序。
    可见,基数排序是一种稳定的排序。

  • 相关阅读:
    学习笔记9
    学习笔记8
    学习笔记7
    学习笔记6
    学习笔记5
    学习笔记4
    学习笔记3
    学习笔记2
    学习笔记1
    矩形覆盖
  • 原文地址:https://www.cnblogs.com/zzwx/p/8820093.html
Copyright © 2011-2022 走看看