题解
设(b[i]=a[i] xor a[i+1])
我们可以发现,修改只会改变(b[l-1])和(b[r])
然后发现(b[i]=1)的点最多(2*k)个
状压(dp)
Code
void bfs(int s) {
memset(vis, 0, sizeof(vis));
vis[s] = 1; q.push(make_pair(s, 0));
while (!q.empty()) {
int u = q.front().first, d = q.front().second; q.pop();
if (b[u]) g[num[s]][num[u]] = d;
for (int i = 1; i <= l; i++) {
if (u + a[i] <= n && !vis[u + a[i]])
vis[u + a[i]] = 1, q.push(make_pair(u + a[i], d + 1));
if (u - a[i] >= 0 && !vis[u - a[i]])
vis[u - a[i]] = 1, q.push(make_pair(u - a[i], d + 1));
}
}
}
void solve() {
n = gi<int>(), k = gi<int>(), l = gi<int>();
memset(b, 0, sizeof(b)); tot = 0;
for (int i = 1; i <= k; i++) b[gi<int>()] = 1;
for (int i = 0; i <= n; i++)
if (b[i] ^= b[i + 1])
num[i] = tot++;
for (int i = 1; i <= l; i++) a[i] = gi<int>();
int lim = 1 << tot;
memset(g, 0x3f, sizeof(g));
memset(f, 0x3f, sizeof(f));
for (int i = 0; i <= n; i++)
if (b[i]) bfs(i);
f[0] = 0;
for (int i = 1, p; i < lim; i++) {
p = 0; while (!(i & 1 << p)) p++;
for (int j = p + 1; j < tot; j++)
if (i & 1 << j)
f[i] = min(f[i], f[i ^ 1 << p ^ 1 << j] + g[j][p]);
}
printf("%d
", f[lim - 1] > inf ? -1 : f[lim - 1]);
return ;
}