zoukankan      html  css  js  c++  java
  • hdu2188 Check Corners

    Check Corners

    Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 858    Accepted Submission(s): 275


    Problem Description
    Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numbers ( 1 <= i <= m, 1 <= j <= n ). Now he selects some sub-matrices, hoping to find the maximum number. Then he finds that there may be more than one maximum number, he also wants to know the number of them. But soon he find that it is too complex, so he changes his mind, he just want to know whether there is a maximum at the four corners of the sub-matrix, he calls this “Check corners”. It’s a boring job when selecting too many sub-matrices, so he asks you for help. (For the “Check corners” part: If the sub-matrix has only one row or column just check the two endpoints. If the sub-matrix has only one entry just output “yes”.)
     
    Input
    There are multiple test cases. 

    For each test case, the first line contains two integers m, n (1 <= m, n <= 300), which is the size of the row and column of the matrix, respectively. The next m lines with n integers each gives the elements of the matrix which fit in non-negative 32-bit integer. 

    The next line contains a single integer Q (1 <= Q <= 1,000,000), the number of queries. The next Q lines give one query on each line, with four integers r1, c1, r2, c2 (1 <= r1 <= r2 <= m, 1 <= c1 <= c2 <= n), which are the indices of the upper-left corner and lower-right corner of the sub-matrix in question. 
     
    Output
    For each test case, print Q lines with two numbers on each line, the required maximum integer and the result of the “Check corners” using “yes” or “no”. Separate the two parts with a single space.
     
    Sample Input
    4 4 4 4 10 7 2 13 9 11 5 7 8 20 13 20 8 2 4 1 1 4 4 1 1 3 3 1 3 3 4 1 1 1 1
     
    Sample Output
    20 no 13 no 20 yes 4 yes
     
    Source
     
    Recommend
    gaojie
     
    题目大意:求矩阵子矩阵的最大值
    题解:二维RMQ
    代码:
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #define maxn 309
    using namespace std;
    
    int n,m,dp[maxn][maxn][9][9],map[maxn][maxn];
    int x,y,xx,yy,q;
    
    void RMQ_pre(){
        for(int i=1;i<=n;i++)
         for(int j=1;j<=m;j++)
          dp[i][j][0][0]=map[i][j];
        int mx=log(double(n))/log(2.0);
        int my=log(double(m))/log(2.0);
        for(int i=0;i<=mx;i++){
            for(int j=0;j<=my;j++){
                if(i==0&&j==0)continue;
                for(int row=1;row+(1<<i)-1<=n;row++){
                    for(int col=1;col+(1<<j)-1<=m;col++){
                        if(i==0)
                         dp[row][col][i][j]=max(dp[row][col][i][j-1],dp[row][col+(1<<(j-1))][i][j-1]);
                        else
                         dp[row][col][i][j]=max(dp[row][col][i-1][j],dp[row+(1<<(i-1))][col][i-1][j]);
                    }
                }
            }
        }
    }
    
    int RMQ_2D(int x,int y,int xx,int yy){
        int kx=log(double(xx-x+1))/log(2.0);
        int ky=log(double(yy-y+1))/log(2.0);
        int m1=dp[x][y][kx][ky];
        int m2=dp[xx-(1<<kx)+1][y][kx][ky];
        int m3=dp[x][yy-(1<<ky)+1][kx][ky];
        int m4=dp[xx-(1<<kx)+1][y-(1<<ky)+1][kx][ky];
        return max(max(m1,m2),max(m3,m4));
    }
    
    int main(){
        while(scanf("%d%d",&n,&m)!=EOF){
            for(int i=1;i<=n;i++)
             for(int j=1;j<=m;j++)
              scanf("%d",&map[i][j]);
            RMQ_pre();
            scanf("%d",&q);
            while(q--){
                scanf("%d%d%d%d",&x,&y,&xx,&yy);
                int ans=RMQ_2D(x,y,xx,yy);
                printf("%d ",ans);
                if(ans==map[x][y]||ans==map[xx][y]||ans==map[xx][yy]||ans==map[xx][yy])
                    printf("yes
    ");
                else printf("no
    ");
            }
        }
        return 0;
    }
     
  • 相关阅读:
    C语言面试题大汇总
    cocos2d-x的win32编译环境
    完美解决Android SDK Manager无法更新
    ADT离线安装教程
    Android开发环境搭建教程
    如何利用dex2jar反编译APK
    Eclipse与Android源码中ProGuard工具的使用
    Proguard语法及常用proguard.cfg代码段
    Android之ProGuard混淆器
    Nutch源码阅读进程2---Generate
  • 原文地址:https://www.cnblogs.com/zzyh/p/7647541.html
Copyright © 2011-2022 走看看