zoukankan      html  css  js  c++  java
  • hdu2188 Check Corners

    Check Corners

    Time Limit: 2000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 858    Accepted Submission(s): 275


    Problem Description
    Paul draw a big m*n matrix A last month, whose entries Ai,j are all integer numbers ( 1 <= i <= m, 1 <= j <= n ). Now he selects some sub-matrices, hoping to find the maximum number. Then he finds that there may be more than one maximum number, he also wants to know the number of them. But soon he find that it is too complex, so he changes his mind, he just want to know whether there is a maximum at the four corners of the sub-matrix, he calls this “Check corners”. It’s a boring job when selecting too many sub-matrices, so he asks you for help. (For the “Check corners” part: If the sub-matrix has only one row or column just check the two endpoints. If the sub-matrix has only one entry just output “yes”.)
     
    Input
    There are multiple test cases. 

    For each test case, the first line contains two integers m, n (1 <= m, n <= 300), which is the size of the row and column of the matrix, respectively. The next m lines with n integers each gives the elements of the matrix which fit in non-negative 32-bit integer. 

    The next line contains a single integer Q (1 <= Q <= 1,000,000), the number of queries. The next Q lines give one query on each line, with four integers r1, c1, r2, c2 (1 <= r1 <= r2 <= m, 1 <= c1 <= c2 <= n), which are the indices of the upper-left corner and lower-right corner of the sub-matrix in question. 
     
    Output
    For each test case, print Q lines with two numbers on each line, the required maximum integer and the result of the “Check corners” using “yes” or “no”. Separate the two parts with a single space.
     
    Sample Input
    4 4 4 4 10 7 2 13 9 11 5 7 8 20 13 20 8 2 4 1 1 4 4 1 1 3 3 1 3 3 4 1 1 1 1
     
    Sample Output
    20 no 13 no 20 yes 4 yes
     
    Source
     
    Recommend
    gaojie
     
    题目大意:求矩阵子矩阵的最大值
    题解:二维RMQ
    代码:
    #include<iostream>
    #include<cstdio>
    #include<cmath>
    #define maxn 309
    using namespace std;
    
    int n,m,dp[maxn][maxn][9][9],map[maxn][maxn];
    int x,y,xx,yy,q;
    
    void RMQ_pre(){
        for(int i=1;i<=n;i++)
         for(int j=1;j<=m;j++)
          dp[i][j][0][0]=map[i][j];
        int mx=log(double(n))/log(2.0);
        int my=log(double(m))/log(2.0);
        for(int i=0;i<=mx;i++){
            for(int j=0;j<=my;j++){
                if(i==0&&j==0)continue;
                for(int row=1;row+(1<<i)-1<=n;row++){
                    for(int col=1;col+(1<<j)-1<=m;col++){
                        if(i==0)
                         dp[row][col][i][j]=max(dp[row][col][i][j-1],dp[row][col+(1<<(j-1))][i][j-1]);
                        else
                         dp[row][col][i][j]=max(dp[row][col][i-1][j],dp[row+(1<<(i-1))][col][i-1][j]);
                    }
                }
            }
        }
    }
    
    int RMQ_2D(int x,int y,int xx,int yy){
        int kx=log(double(xx-x+1))/log(2.0);
        int ky=log(double(yy-y+1))/log(2.0);
        int m1=dp[x][y][kx][ky];
        int m2=dp[xx-(1<<kx)+1][y][kx][ky];
        int m3=dp[x][yy-(1<<ky)+1][kx][ky];
        int m4=dp[xx-(1<<kx)+1][y-(1<<ky)+1][kx][ky];
        return max(max(m1,m2),max(m3,m4));
    }
    
    int main(){
        while(scanf("%d%d",&n,&m)!=EOF){
            for(int i=1;i<=n;i++)
             for(int j=1;j<=m;j++)
              scanf("%d",&map[i][j]);
            RMQ_pre();
            scanf("%d",&q);
            while(q--){
                scanf("%d%d%d%d",&x,&y,&xx,&yy);
                int ans=RMQ_2D(x,y,xx,yy);
                printf("%d ",ans);
                if(ans==map[x][y]||ans==map[xx][y]||ans==map[xx][yy]||ans==map[xx][yy])
                    printf("yes
    ");
                else printf("no
    ");
            }
        }
        return 0;
    }
     
  • 相关阅读:
    STM32时钟配置方法详解
    STM32 入门之 GPIO
    arm可以干什么
    四两拨千斤,ARM是如何运作、靠什么赚钱的
    ARM内核全解析,从ARM7,ARM9到Cortex-A7,A8,A9,A12,A15到Cortex-A53,A57
    ARM与单片机到底有啥区别
    实得打印机色带芯更换
    IE浏览器不能上传图片
    IE FANS
    win8,win10里面内置的IE浏览器网银无法输入密码
  • 原文地址:https://www.cnblogs.com/zzyh/p/7647541.html
Copyright © 2011-2022 走看看