zoukankan      html  css  js  c++  java
  • 图像处理 -- 振铃现象

    图像处理中,对一幅图像进行滤波处理,若选用的频域滤波器具有陡峭的变化,则会使滤波图像产生“振铃”,所谓“振铃”,就是指输出图像的灰度剧烈变化处产生的震荡,就好像钟被敲击后产生的空气震荡。如下图:

    由卷积定理可将下面两种增强联系起来:

    频域增强:

    空域卷积:

    其中f,g,h分别为输入图像,增强图像,空域滤波函数;F,G,H分别为各自的傅里叶变换。*为卷积符号。

    在空间域将低通滤波作为卷积过程来理解的关键是h(x,y)的特性:可将h(x,y)分为两部分:原点处的中心部分,中心周围集中的成周期分布的外围部分。前者决定模糊,后者决定振铃现象。若外围部分有明显的震荡,则g(x,y)会出现振铃。利用傅里叶变换,我们发现,若频域滤波函数具有陡峭变化,则傅里叶逆变换得到的空域滤波函数会在外围出现震荡。

    下面给出三个常用的低通滤波器:理想型、巴特沃斯型、高斯型。并分析他们对用的空域滤波函数的特点,验证上述结论。

    理想型:

                 

    理想型滤波会出现振铃,可以看出空域滤波函数图像外围有剧烈震荡。

    巴特沃斯型:

     

    为阶数,1阶巴特沃斯没有“振铃“,随着阶数增大,振铃现象越发明显。下图取n=2,可以看出空域函数外围部分出现震荡。

     高斯型:

              

    高斯函数的傅里叶变换仍然是高斯函数,故高斯型滤波器不会产生“振铃“。

     上述图像的生成程序:

    close all;
    clear all;
    d0=8;
    M=60;N=60;
    c1=floor(M/2);     
    c2=floor(N/2);      
    h1=zeros(M,N);      %理想型
    h2=zeros(M,N);      %巴特沃斯型
    h3=zeros(M,N);      %高斯型
    sigma=4;
    n=4;%巴特沃斯阶数
    for i=1:M
        for j=1:N
            d=sqrt((i-c1)^2+(j-c2)^2);
            if d<=d0
                h1(i,j)=1;
            else
                h1(i,j)=0;
            end
            h2(i,j)=1/(1+(d/d0)^(2*n)); 
            h3(i,j)=exp(-d^2/(2*sigma^2)); 
        end
    end
    draw2(h1,'理想');
    draw2(h2,'巴特沃斯');
    draw2(h3,'高斯');
     
    function draw2(h,name)
    figure;
    surf(h);title(strcat('频域',name));
    fx=abs(ifft2(h));
    fx=fftshift(fx);
    figure;surf(fx);title(strcat('空域',name));

    注:fftshift与ifftshift区别,对偶数行列矩阵相同,奇数相互弥补,组合使之可逆

    https://blog.csdn.net/u010839382/article/details/41971603

  • 相关阅读:
    算法训练 表达式计算
    基础练习 十六进制转十进制
    基础练习 十六进制转十进制
    基础练习 十六进制转十进制
    New ways to verify that Multipath TCP works through your network
    TCP的拥塞控制 (Tahoe Reno NewReno SACK)
    Multipath TCP Port for Android 4.1.2
    How to enable ping response in windows 7?
    NS3
    Multipath TCP Port for Android
  • 原文地址:https://www.cnblogs.com/zzzsj/p/14647563.html
Copyright © 2011-2022 走看看