POJ 2446 二分图的最大匹配 匈牙利算法
Chessboard
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 14350 | Accepted: 4471 |
Description
Alice and Bob often play games on chessboard. One day, Alice draws a board with size M * N. She wants Bob to use a lot of cards with size 1 * 2 to cover the board. However, she thinks it too easy to bob, so she makes some holes on the board (as shown in the figure below).
We call a grid, which doesn’t contain a hole, a normal grid. Bob has to follow the rules below:
1. Any normal grid should be covered with exactly one card.
2. One card should cover exactly 2 normal adjacent grids.
Some examples are given in the figures below:
A VALID solution.
An invalid solution, because the hole of red color is covered with a card.
An invalid solution, because there exists a grid, which is not covered.
Your task is to help Bob to decide whether or not the chessboard can be covered according to the rules above.
We call a grid, which doesn’t contain a hole, a normal grid. Bob has to follow the rules below:
1. Any normal grid should be covered with exactly one card.
2. One card should cover exactly 2 normal adjacent grids.
Some examples are given in the figures below:
A VALID solution.
An invalid solution, because the hole of red color is covered with a card.
An invalid solution, because there exists a grid, which is not covered.
Your task is to help Bob to decide whether or not the chessboard can be covered according to the rules above.
Input
There are 3 integers in the first line: m, n, k (0 < m, n <= 32, 0 <= K < m * n), the number of rows, column and holes. In the next k lines, there is a pair of integers (x, y) in each line, which represents a hole in the y-th row, the x-th column.
Output
If the board can be covered, output "YES". Otherwise, output "NO".
Sample Input
4 3 2 2 1 3 3
Sample Output
YES
题意:用2*1的木板覆盖给定的棋盘(棋盘中有墙),木板不能重叠,问是否能全部覆盖
思路:奇偶建二分图,把棋盘涂成黑白相间,每个黑格和4个白格相邻,每个白格和四个黑格相邻,黑格移入U,白格移入V,求最大匹配,由于每个匹配对应两个结点,若最大匹配*2等于总结点数说明成功覆盖
/* poj2446 141ms */ #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<algorithm> #include<vector> using namespace std; const int maxn=1200; int N,M,K; int uN,vN; vector<int> G[maxn]; int link[maxn]; bool vis[maxn]; int ch[maxn][maxn]; int dx[]={-1,1,0,0}; int dy[]={0,0,-1,1}; bool dfs(int u) { for(int i=0;i<G[u].size();i++){ int v=G[u][i]; if(!vis[v]){ vis[v]=1; if(link[v]==-1||dfs(link[v])){ link[v]=u; return true; } } } return false; } int hungary() { int res=0; memset(link,-1,sizeof(link)); for(int u=1;u<=uN;u++){ memset(vis,0,sizeof(vis)); if(dfs(u)) res++; } return res; } int main() { cin>>N>>M>>K; for(int i=1;i<=N*M;i++) G[i].clear(); memset(ch,-1,sizeof(ch)); uN=vN=0; while(K--){ int i,j; scanf("%d%d",&j,&i); ch[i][j]=0; } for(int i=1;i<=N;i++){ for(int j=1;j<=M;j++){ if(ch[i][j]){ if((i+j)%2) ch[i][j]=++uN; else ch[i][j]=++vN; } } } for(int i=1;i<=N;i++){ for(int j=1;j<=M;j++){ if(ch[i][j]&&ch[i][j]!=-1&&(i+j)%2){ for(int k=0;k<4;k++){ int x=i+dx[k],y=j+dy[k]; if(ch[x][y]&&ch[x][y]!=-1) G[ch[i][j]].push_back(ch[x][y]); } } } } int match=hungary(); if(match*2==uN+vN) cout<<"YES"<<endl; else cout<<"NO"<<endl; return 0; }