light_oj 1336 约数和奇偶性
Description
Sigma function is an interesting function in Number Theory. It is denoted by the Greek letter Sigma (σ). This function actually denotes the sum of all divisors of a number. For example σ(24) = 1+2+3+4+6+8+12+24=60. Sigma of small numbers is easy to find but for large numbers it is very difficult to find in a straight forward way. But mathematicians have discovered a formula to find sigma. If the prime power decomposition of an integer is
Then we can write,
For some n the value of σ(n) is odd and for others it is even. Given a value n, you will have to find how many integers from 1 to n have even value of σ.
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 1012).
Output
For each case, print the case number and the result.
Sample Input
4
3
10
100
1000
Sample Output
Case 1: 1
Case 2: 5
Case 3: 83
Case 4: 947
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/D
题意:求[1,n]中约数和为偶数的数的个数
思路:根据算术基本定理的约数和公式f(n)=(1+p1+p1^2+...+p1^k1)(1+p2+p2^2+...+p2^k2)...(1+pn+pn^3+...+pn^kn);
其中n=(p1^k1)*(p2^k2)*...*(pn^kn);(分解素因数)
由于奇数*奇数还是奇数,奇数*偶数或者偶数相乘是偶数。而素数除了2都是奇数。
f(n)的奇偶性取决于每个因子的奇偶性,只要出现一个因子是偶数时f(n)为偶数。
对每个因子,1+p+p^2+...+p^k的奇偶性,
p为素数,当p是2时,式子为偶数;
当p不是2时,p是奇数数,p^i为奇数,式子总共k+1项,即k+1个奇数的和,k为偶数时式子为奇数。
以此条件反推dfs出所有的f(n)为奇数的n,方法是每次乘以奇素数素数的两倍或者2,得到的n就是f(n)为奇数的n了。
#include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<vector> #include<stack> #include<queue> #include<set> #include<map> #include<string> #include<math.h> #include<cctype> using namespace std; typedef long long ll; const int maxn=1000100; const int INF=(1<<29); const double EPS=0.0000000001; const double Pi=acos(-1.0); ll n; vector<ll> odd; bool isprime[maxn]; vector<int> prime; const ll M=1000000000010; void play_prime() { memset(isprime,1,sizeof(isprime)); isprime[1]=0; for(int i=2;i<maxn;i++){ if(!isprime[i]) continue; for(int j=i*2;j<maxn;j+=i){ isprime[j]=0; } } for(int i=1;i<maxn;i++){ if(isprime[i]) prime.push_back(i); } } void dfs(int dep,ll cur) { odd.push_back(cur); if(dep>=(int)prime.size()) return; for(int i=dep;i<prime.size();i++){ ll t=prime[i]; if(t==2){ if(cur<=M/2) dfs(i,cur*2); else return; } else{ if(cur<=M/(t*t)) dfs(i,cur*t*t); else return; } } } int main() { int T;cin>>T; play_prime(); dfs(0,1); sort(odd.begin(),odd.end()); int tag=1; while(T--){ cin>>n; ll ans=upper_bound(odd.begin(),odd.end(),n)-odd.begin(); printf("Case %d: %lld ",tag++,n-ans); } return 0; }
补充:
偶然看到的,这思路真是厉害
http://www.hardbird.net/?p=449