zoukankan      html  css  js  c++  java
  • HDU 4691 Front compression

    Front compression

    Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
    Total Submission(s): 621    Accepted Submission(s): 255

    Problem Description
    Front compression is a type of delta encoding compression algorithm whereby common prefixes and their lengths are recorded so that they need not be duplicated. For example:

    The size of the input is 43 bytes, while the size of the compressed output is 40. Here, every space and newline is also counted as 1 byte.
    Given the input, each line of which is a substring of a long string, what are sizes of it and corresponding compressed output?
     
    Input
    There are multiple test cases. Process to the End of File.
    The first line of each test case is a long string S made up of lowercase letters, whose length doesn't exceed 100,000. The second line contains a integer 1 ≤ N ≤ 100,000, which is the number of lines in the input. Each of the following N lines contains two integers 0 ≤ A < B ≤ length(S), indicating that that line of the input is substring [A, B) of S.
     
    Output
    For each test case, output the sizes of the input and corresponding compressed output.
     
    Sample Input
    frcode 2 0 6 0 6 unitedstatesofamerica 3 0 6 0 12 0 21 myxophytamyxopodnabnabbednabbingnabit 6 0 9 9 16 16 19 19 25 25 32 32 37
     
    Sample Output
    14 12 42 31 43 40
     
    Author
    Zejun Wu (watashi)
     
    Source
     
    Recommend
    zhuyuanchen520

    重新学了一下后缀数组,第一次用后缀数组过题
    后缀数组(height[])+RMQ
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <cmath>
    #define N 100010
    #define M 30
    using namespace std;
    char s1[N];
    int sa[N],tsa[N],sum[N],rank[2*N],trank[2*N],height[N];
    int dp[N][M];
    int main()
    {
        //freopen("data.in","r",stdin);
        void get_sa();
        void get_height();
        void pre_RMQ();
        int get_RMQ(int l,int r);
        int digit(int k);
        while(scanf("%s",s1)!=EOF)
        {
            get_sa();
            get_height();
            pre_RMQ();
            int n,x1,y1;
            __int64 res1=0,res2=0;
            scanf("%d",&n);
            for(int i=1;i<=n;i++)
            {
                int x2,y2;
                scanf("%d %d",&x2,&y2);
                res1+=(__int64)(y2-x2+1);
                if(i==1)
                {
                    res2+=(__int64)(y2-x2+3);
                }else
                {
                    int t;
                    if(x1==x2)
                    {
                        t=min(y2-x2,y1-x1);
                    }else
                    {
                        t=get_RMQ(min(rank[x1+1],rank[x2+1])+1,max(rank[x1+1],rank[x2+1]));
                        if(t+x2<=y2&&t+x1<=y1)
                        {
                            ;
                        }else
                        {
                            t=min(y2-x2,y1-x1);
                        }
                    }
                    int ans1=digit(t);
                    int ans2=y2-x2-t+2;
                    res2+=(__int64)(ans1+ans2);
                }
                x1 = x2;
                y1 = y2;
            }
            printf("%I64d %I64d
    ",res1,res2);
        }
        return 0;
    }
    void sorting(int k)
    {
        memset(sum,0,sizeof(sum));
        int l = strlen(s1);
        for(int i=1;i<=l;i++)
        {
            sum[rank[i+k]]++;
        }
        for(int i=1;i<=l;i++)
        {
            sum[i]+=sum[i-1];
        }
        for(int i=l;i>=1;i--)
        {
            tsa[sum[rank[i+k]]--]=i;
        }
        memset(sum,0,sizeof(sum));
        for(int i=1;i<=l;i++)
        {
            sum[rank[i]]++;
        }
        for(int i=1;i<=l;i++)
        {
            sum[i]+=sum[i-1];
        }
        for(int i=l;i>=1;i--)
        {
            sa[sum[rank[tsa[i]]]--]=tsa[i];
        }
    }
    void get_sa()
    {
        int l = strlen(s1);
        memset(rank,0,sizeof(rank));
        for(int i=0;i<=l-1;i++)
        {
            trank[i+1]=s1[i];
        }
        memset(sum,0,sizeof(sum));
        for(int i=1;i<=l;i++)
        {
            sum[trank[i]]++;
        }
        for(int i=1;i<=256;i++)
        {
            sum[i]+=sum[i-1];
        }
        for(int i=l;i>=1;i--)
        {
            sa[sum[trank[i]]--]=i;
        }
        rank[sa[1]]=1;
        for(int i=2,p=1;i<=l;i++)
        {
            if(trank[sa[i]]!=trank[sa[i-1]])
            {
                p++;
            }
            rank[sa[i]]=p;
        }
        for(int i=1;i<=l;i=i*2)
        {
            sorting(i);
            trank[sa[1]]=1;
            for(int j=2,p=1;j<=l;j++)
            {
                if(rank[sa[j]]!=rank[sa[j-1]]||rank[sa[j]+i]!=rank[sa[j-1]+i])
                {
                    p++;
                }
                trank[sa[j]]=p;
            }
            for(int j=1;j<=l;j++)
            {
                rank[j]=trank[j];
            }
        }
    }
    void get_height()
    {
        height[1]=0;
        int l = strlen(s1);
        for(int i=1,j=0;i<=l;i++)
        {
            if(rank[i]==1)
            {
                continue;
            }
            while(s1[i+j-1]==s1[sa[rank[i]-1]+j-1])
            {
                j++;
            }
            height[rank[i]]=j;
            if(j>0)
            {
                j--;
            }
        }
    }
    void pre_RMQ()
    {
        int l = strlen(s1);
        for(int i=1;i<=l;i++)
        {
            dp[i][0]=height[i];
        }
        for(int j=1;(1<<j)<=l;j++)
        {
            for(int i=1;i+(1<<(j-1))<=l;i++)
            {
                dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
            }
        }
    }
    int get_RMQ(int l,int r)
    {
        int j=0;
        while((1<<(j+1))<=(r-l+1))
        {
            j++;
        }
        return min(dp[l][j],dp[r-(1<<j)+1][j]);
    }
    int digit(int k)
    {
        if(k==0)
        {
            return 1;
        }
        int s=0;
        while(k!=0)
        {
            s+=1;
            k=k/10;
        }
        return s;
    }
    
    
  • 相关阅读:
    常用的正则表达式
    VScode格式化代码,开启ESlint代码检测方法,eslint代码配置
    git 常用的操作
    vscode 格式化的时候自动添加分号怎么去除
    echarts渐变色实现方法
    echart 柱状图 数值较小的时候,文字显示不全
    iview的Modal在提交表单时确认按钮loading状态冲突问题解决方案
    vue.js动态获取菜单
    12.18 webSocket消息推送
    12.18 微信模板消息推送
  • 原文地址:https://www.cnblogs.com/pangblog/p/3275657.html
Copyright © 2011-2022 走看看