zoukankan      html  css  js  c++  java
  • HDU 4691 Front compression

    Front compression

    Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
    Total Submission(s): 621    Accepted Submission(s): 255

    Problem Description
    Front compression is a type of delta encoding compression algorithm whereby common prefixes and their lengths are recorded so that they need not be duplicated. For example:

    The size of the input is 43 bytes, while the size of the compressed output is 40. Here, every space and newline is also counted as 1 byte.
    Given the input, each line of which is a substring of a long string, what are sizes of it and corresponding compressed output?
     
    Input
    There are multiple test cases. Process to the End of File.
    The first line of each test case is a long string S made up of lowercase letters, whose length doesn't exceed 100,000. The second line contains a integer 1 ≤ N ≤ 100,000, which is the number of lines in the input. Each of the following N lines contains two integers 0 ≤ A < B ≤ length(S), indicating that that line of the input is substring [A, B) of S.
     
    Output
    For each test case, output the sizes of the input and corresponding compressed output.
     
    Sample Input
    frcode 2 0 6 0 6 unitedstatesofamerica 3 0 6 0 12 0 21 myxophytamyxopodnabnabbednabbingnabit 6 0 9 9 16 16 19 19 25 25 32 32 37
     
    Sample Output
    14 12 42 31 43 40
     
    Author
    Zejun Wu (watashi)
     
    Source
     
    Recommend
    zhuyuanchen520

    重新学了一下后缀数组,第一次用后缀数组过题
    后缀数组(height[])+RMQ
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <cmath>
    #define N 100010
    #define M 30
    using namespace std;
    char s1[N];
    int sa[N],tsa[N],sum[N],rank[2*N],trank[2*N],height[N];
    int dp[N][M];
    int main()
    {
        //freopen("data.in","r",stdin);
        void get_sa();
        void get_height();
        void pre_RMQ();
        int get_RMQ(int l,int r);
        int digit(int k);
        while(scanf("%s",s1)!=EOF)
        {
            get_sa();
            get_height();
            pre_RMQ();
            int n,x1,y1;
            __int64 res1=0,res2=0;
            scanf("%d",&n);
            for(int i=1;i<=n;i++)
            {
                int x2,y2;
                scanf("%d %d",&x2,&y2);
                res1+=(__int64)(y2-x2+1);
                if(i==1)
                {
                    res2+=(__int64)(y2-x2+3);
                }else
                {
                    int t;
                    if(x1==x2)
                    {
                        t=min(y2-x2,y1-x1);
                    }else
                    {
                        t=get_RMQ(min(rank[x1+1],rank[x2+1])+1,max(rank[x1+1],rank[x2+1]));
                        if(t+x2<=y2&&t+x1<=y1)
                        {
                            ;
                        }else
                        {
                            t=min(y2-x2,y1-x1);
                        }
                    }
                    int ans1=digit(t);
                    int ans2=y2-x2-t+2;
                    res2+=(__int64)(ans1+ans2);
                }
                x1 = x2;
                y1 = y2;
            }
            printf("%I64d %I64d
    ",res1,res2);
        }
        return 0;
    }
    void sorting(int k)
    {
        memset(sum,0,sizeof(sum));
        int l = strlen(s1);
        for(int i=1;i<=l;i++)
        {
            sum[rank[i+k]]++;
        }
        for(int i=1;i<=l;i++)
        {
            sum[i]+=sum[i-1];
        }
        for(int i=l;i>=1;i--)
        {
            tsa[sum[rank[i+k]]--]=i;
        }
        memset(sum,0,sizeof(sum));
        for(int i=1;i<=l;i++)
        {
            sum[rank[i]]++;
        }
        for(int i=1;i<=l;i++)
        {
            sum[i]+=sum[i-1];
        }
        for(int i=l;i>=1;i--)
        {
            sa[sum[rank[tsa[i]]]--]=tsa[i];
        }
    }
    void get_sa()
    {
        int l = strlen(s1);
        memset(rank,0,sizeof(rank));
        for(int i=0;i<=l-1;i++)
        {
            trank[i+1]=s1[i];
        }
        memset(sum,0,sizeof(sum));
        for(int i=1;i<=l;i++)
        {
            sum[trank[i]]++;
        }
        for(int i=1;i<=256;i++)
        {
            sum[i]+=sum[i-1];
        }
        for(int i=l;i>=1;i--)
        {
            sa[sum[trank[i]]--]=i;
        }
        rank[sa[1]]=1;
        for(int i=2,p=1;i<=l;i++)
        {
            if(trank[sa[i]]!=trank[sa[i-1]])
            {
                p++;
            }
            rank[sa[i]]=p;
        }
        for(int i=1;i<=l;i=i*2)
        {
            sorting(i);
            trank[sa[1]]=1;
            for(int j=2,p=1;j<=l;j++)
            {
                if(rank[sa[j]]!=rank[sa[j-1]]||rank[sa[j]+i]!=rank[sa[j-1]+i])
                {
                    p++;
                }
                trank[sa[j]]=p;
            }
            for(int j=1;j<=l;j++)
            {
                rank[j]=trank[j];
            }
        }
    }
    void get_height()
    {
        height[1]=0;
        int l = strlen(s1);
        for(int i=1,j=0;i<=l;i++)
        {
            if(rank[i]==1)
            {
                continue;
            }
            while(s1[i+j-1]==s1[sa[rank[i]-1]+j-1])
            {
                j++;
            }
            height[rank[i]]=j;
            if(j>0)
            {
                j--;
            }
        }
    }
    void pre_RMQ()
    {
        int l = strlen(s1);
        for(int i=1;i<=l;i++)
        {
            dp[i][0]=height[i];
        }
        for(int j=1;(1<<j)<=l;j++)
        {
            for(int i=1;i+(1<<(j-1))<=l;i++)
            {
                dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
            }
        }
    }
    int get_RMQ(int l,int r)
    {
        int j=0;
        while((1<<(j+1))<=(r-l+1))
        {
            j++;
        }
        return min(dp[l][j],dp[r-(1<<j)+1][j]);
    }
    int digit(int k)
    {
        if(k==0)
        {
            return 1;
        }
        int s=0;
        while(k!=0)
        {
            s+=1;
            k=k/10;
        }
        return s;
    }
    
    
  • 相关阅读:
    定位属性position,相对定位,绝对定位
    flex弹性盒模型?
    vue生命周期
    理解cookie、session、token
    前端兼容性问题
    JS 如何为一个元素怎么绑定多个事件?
    js数组的操作方法
    vue页面翻页勾选的记忆功能
    Vue中nextTick的正确使用
    Vue用router.push(传参)跳转页面,参数改变,跳转页面数据不刷新的解决办法
  • 原文地址:https://www.cnblogs.com/pangblog/p/3275657.html
Copyright © 2011-2022 走看看