zoukankan      html  css  js  c++  java
  • HDU 4691 Front compression

    Front compression

    Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)
    Total Submission(s): 621    Accepted Submission(s): 255

    Problem Description
    Front compression is a type of delta encoding compression algorithm whereby common prefixes and their lengths are recorded so that they need not be duplicated. For example:

    The size of the input is 43 bytes, while the size of the compressed output is 40. Here, every space and newline is also counted as 1 byte.
    Given the input, each line of which is a substring of a long string, what are sizes of it and corresponding compressed output?
     
    Input
    There are multiple test cases. Process to the End of File.
    The first line of each test case is a long string S made up of lowercase letters, whose length doesn't exceed 100,000. The second line contains a integer 1 ≤ N ≤ 100,000, which is the number of lines in the input. Each of the following N lines contains two integers 0 ≤ A < B ≤ length(S), indicating that that line of the input is substring [A, B) of S.
     
    Output
    For each test case, output the sizes of the input and corresponding compressed output.
     
    Sample Input
    frcode 2 0 6 0 6 unitedstatesofamerica 3 0 6 0 12 0 21 myxophytamyxopodnabnabbednabbingnabit 6 0 9 9 16 16 19 19 25 25 32 32 37
     
    Sample Output
    14 12 42 31 43 40
     
    Author
    Zejun Wu (watashi)
     
    Source
     
    Recommend
    zhuyuanchen520

    重新学了一下后缀数组,第一次用后缀数组过题
    后缀数组(height[])+RMQ
    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <cmath>
    #define N 100010
    #define M 30
    using namespace std;
    char s1[N];
    int sa[N],tsa[N],sum[N],rank[2*N],trank[2*N],height[N];
    int dp[N][M];
    int main()
    {
        //freopen("data.in","r",stdin);
        void get_sa();
        void get_height();
        void pre_RMQ();
        int get_RMQ(int l,int r);
        int digit(int k);
        while(scanf("%s",s1)!=EOF)
        {
            get_sa();
            get_height();
            pre_RMQ();
            int n,x1,y1;
            __int64 res1=0,res2=0;
            scanf("%d",&n);
            for(int i=1;i<=n;i++)
            {
                int x2,y2;
                scanf("%d %d",&x2,&y2);
                res1+=(__int64)(y2-x2+1);
                if(i==1)
                {
                    res2+=(__int64)(y2-x2+3);
                }else
                {
                    int t;
                    if(x1==x2)
                    {
                        t=min(y2-x2,y1-x1);
                    }else
                    {
                        t=get_RMQ(min(rank[x1+1],rank[x2+1])+1,max(rank[x1+1],rank[x2+1]));
                        if(t+x2<=y2&&t+x1<=y1)
                        {
                            ;
                        }else
                        {
                            t=min(y2-x2,y1-x1);
                        }
                    }
                    int ans1=digit(t);
                    int ans2=y2-x2-t+2;
                    res2+=(__int64)(ans1+ans2);
                }
                x1 = x2;
                y1 = y2;
            }
            printf("%I64d %I64d
    ",res1,res2);
        }
        return 0;
    }
    void sorting(int k)
    {
        memset(sum,0,sizeof(sum));
        int l = strlen(s1);
        for(int i=1;i<=l;i++)
        {
            sum[rank[i+k]]++;
        }
        for(int i=1;i<=l;i++)
        {
            sum[i]+=sum[i-1];
        }
        for(int i=l;i>=1;i--)
        {
            tsa[sum[rank[i+k]]--]=i;
        }
        memset(sum,0,sizeof(sum));
        for(int i=1;i<=l;i++)
        {
            sum[rank[i]]++;
        }
        for(int i=1;i<=l;i++)
        {
            sum[i]+=sum[i-1];
        }
        for(int i=l;i>=1;i--)
        {
            sa[sum[rank[tsa[i]]]--]=tsa[i];
        }
    }
    void get_sa()
    {
        int l = strlen(s1);
        memset(rank,0,sizeof(rank));
        for(int i=0;i<=l-1;i++)
        {
            trank[i+1]=s1[i];
        }
        memset(sum,0,sizeof(sum));
        for(int i=1;i<=l;i++)
        {
            sum[trank[i]]++;
        }
        for(int i=1;i<=256;i++)
        {
            sum[i]+=sum[i-1];
        }
        for(int i=l;i>=1;i--)
        {
            sa[sum[trank[i]]--]=i;
        }
        rank[sa[1]]=1;
        for(int i=2,p=1;i<=l;i++)
        {
            if(trank[sa[i]]!=trank[sa[i-1]])
            {
                p++;
            }
            rank[sa[i]]=p;
        }
        for(int i=1;i<=l;i=i*2)
        {
            sorting(i);
            trank[sa[1]]=1;
            for(int j=2,p=1;j<=l;j++)
            {
                if(rank[sa[j]]!=rank[sa[j-1]]||rank[sa[j]+i]!=rank[sa[j-1]+i])
                {
                    p++;
                }
                trank[sa[j]]=p;
            }
            for(int j=1;j<=l;j++)
            {
                rank[j]=trank[j];
            }
        }
    }
    void get_height()
    {
        height[1]=0;
        int l = strlen(s1);
        for(int i=1,j=0;i<=l;i++)
        {
            if(rank[i]==1)
            {
                continue;
            }
            while(s1[i+j-1]==s1[sa[rank[i]-1]+j-1])
            {
                j++;
            }
            height[rank[i]]=j;
            if(j>0)
            {
                j--;
            }
        }
    }
    void pre_RMQ()
    {
        int l = strlen(s1);
        for(int i=1;i<=l;i++)
        {
            dp[i][0]=height[i];
        }
        for(int j=1;(1<<j)<=l;j++)
        {
            for(int i=1;i+(1<<(j-1))<=l;i++)
            {
                dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
            }
        }
    }
    int get_RMQ(int l,int r)
    {
        int j=0;
        while((1<<(j+1))<=(r-l+1))
        {
            j++;
        }
        return min(dp[l][j],dp[r-(1<<j)+1][j]);
    }
    int digit(int k)
    {
        if(k==0)
        {
            return 1;
        }
        int s=0;
        while(k!=0)
        {
            s+=1;
            k=k/10;
        }
        return s;
    }
    
    
  • 相关阅读:
    Qt 跟踪鼠标事件:setMouseTracking(true)
    Qt setMouseTracking使用
    Qt QGraphicsItem 鼠标点击事件编程方法
    Qt QGraphicsItem信号连接有关问题
    Qt 自定义QGraphicsItem
    Qt 视图框架QGraphicsItem
    Qt QGraphicsItem要点 积累
    Qt Q_UNUSED() 方法的使用
    Qt 绘图之QGraphicsScene QGraphicsView QGraphicsItem详解
    Qt 使用QGraphicsItem绘制复杂的图形
  • 原文地址:https://www.cnblogs.com/pangblog/p/3275657.html
Copyright © 2011-2022 走看看