zoukankan      html  css  js  c++  java
  • 目标提取和检测实例

    提取照片中军旗棋子,供文本识别使用

    本质:提取矩形四个角落,并进行透视变换;
    检测矩形步骤:

    图像预处理
    边缘检测
    提取轮廓
    检测凸包
    角点检测

    实例:
    原始图像

    """
    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
    @desc: 用手机拍摄军旗棋子照片,将这两个棋子内容从照片中提取出来,供下一步文本识别使用
    坐标返回顺序
    [左上,右上,右下,左下]
    """
    import cv2
    import numpy as np
    import math
    
    
    
    class Config(object):
        def __init__(self):
            pass
        src = r"D:workplacedataopencv20190905214945506.png"
        resize_rate = 0.5
        min_area = 5000
        min_contours = 8
        threshold_thresh = 50
        epsilon_start = 10
        epsilon_step = 10
    
    
    
    def order_points(pts):
        """
        点集排序
        :param pts:
        :return:
        """
        rect = np.zeros((4,2), dtype="float32")
        s = pts.sum(axis=1)
        rect[0] = pts[np.argmin(s)]
        rect[2] = pts[np.argmax(s)]
    
    
        diff = np.diff(pts, axis=1)
        rect[1] = pts[np.argmin(diff)]
        rect[3] = pts[np.argmax(diff)]
    
        return rect
    
    
    def point_distance(a, b):
        """
        求两点之间的距离
        :param a:
        :param b:
        :return:
        """
        return int(np.sqrt(np.sum(np.square(a-b))))
    
    
    def bounding_box(idx, c):
        """
        找出外接四边形
        :param idx:
        :param c: 轮廓坐标数组
        :return:
        """
        if len(c) < Config.min_contours:
            return None
        epsilon = Config.epsilon_start
        while True:
            approx_box = cv2.approxPolyDP(c, epsilon, True)
            # 求出拟合得到的多边形
            the_area = math.fabs(cv2.contourArea(approx_box))
            # 输出拟合信息
            print("contour idx: %d, contour_len: %d,"
                  " epsilon: %d, approx_len: %d, approve_area: %s"%(idx, len(c), epsilon, len(approx_box),the_area))
            if (len(approx_box) < 4):
                return None
            if the_area > Config.min_area:
                if (len(approx_box) > 4):
                    epsilon += Config.epsilon_step
                    continue
                else: # approx 的长度为4,表明已经拟合成矩形了
                    # 转换成4*2的数组
                    approx_box = approx_box.reshape((4,2))
                    return approx_box
            else:
                print("failed to find boundingBox, idx = %d area = %f"%(idx, the_area))
                return None
    
    def main():
        img = cv2.imread(Config.src)
        # cv2.imshow("origin", img)
    
        # 获取原始图像大小
        src_height, src_width, channels = img.shape
        # 对图像进行缩放
        img = cv2.resize(img, (int(src_width*Config.resize_rate), int(src_height * Config.resize_rate)))
        # cv2.imshow("resize_img", img)
        # 转灰度图像
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    
        # 中值滤波,消除噪声
        binary = cv2.medianBlur(gray,3)
    
        # 转换为二值图像
        ret, binary = cv2.threshold(binary, Config.threshold_thresh, 255, cv2.THRESH_BINARY)
        # 显示转换后的二值图像
        cv2.imshow("binary", binary)
    
        # 进行二次腐蚀操作
        # 腐蚀操作会腐蚀图像中白色像素, 可以将断开的线段连接起来
        binary = cv2.erode(binary, None, iterations=2)
        cv2.imshow("erode", binary)
    
        # canny 边缘检测
        binary = cv2.Canny(binary, 0, 60, apertureSize=3)
        cv2.imshow("Canny", binary)
    
        # 提取轮廓
        _, contours, _ = cv2.findContours(binary, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    
        # 输出轮廓数目
        print("the count of contour is %d 
    "%(len(contours)))
    
        # 针对每个轮廓,拟合外接四边形,如果成功,则将改区域切割出来, 做透视变换, 并保存图片文件
        for idx, c in enumerate(contours):
            approx_box = bounding_box(idx, c)
            if approx_box is None:
                continue
            # 获取最小矩形包络
            rect = cv2.minAreaRect(approx_box)
            box = cv2.boxPoints(rect)
            box = np.int0(box)
            box = box.reshape(4,2)
            box = order_points(box)
    
            print("bounding_box: 
    ", box)
            # 切割区域的原始位置
            src_rect = order_points(approx_box)
            print("src_rect: 
    ", src_rect)
    
            w, h = point_distance(box[0], box[1]), point_distance(box[1], box[2])
            print("w = %d, h = %d"%(w, h))
    
            # 生成透视变换矩阵
            dst_rect = np.array([
                [0,0],
                [w-1,0],
                [w-1,h-1],
                [0,h-1]
            ], dtype="float32")
    
            # 透视变换
            M = cv2.getPerspectiveTransform(src_rect, dst_rect)
    
            # 得到透视后的图像
            warped = cv2.warpPerspective(img, M, (w,h))
    
            # 将变换后的结果图像写入png文件
            cv2.imwrite(r"D:workplacedataopencv20190905214945507_%d.png"%(idx),
                        warped, [int(cv2.IMWRITE_PNG_COMPRESSION), 9])
    
        print("END")
    
        cv2.waitKey(0)
        cv2.destroyAllWindows()
    
    
    if __name__ == '__main__':
        main()
    
    

    结果示例:

    提取结果:

  • 相关阅读:
    Linux
    Linus
    Linux
    Linux
    Linux
    Linux
    Linux
    Linux
    Django日志配置
    linux
  • 原文地址:https://www.cnblogs.com/01black-white/p/15394375.html
Copyright © 2011-2022 走看看