To the Max
| Time Limit: 1000MS | Memory Limit: 10000K | |
| Total Submissions: 35476 | Accepted: 18625 |
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. As an example, the maximal sub-rectangle of the array:
0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 is in the lower left corner:
9 2 -4 1 -1 8 and has a sum of 15.
0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 is in the lower left corner:
9 2 -4 1 -1 8 and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
代码:
// 最大连续和扩展
// 最近DP D到吐血= = 对于新手来说好难想到状态
// 还是好好修炼吧= =
#include<cstdio>
#include<cstring>
using namespace std ;
#define M 110
int a[M][M] , d[M] ;
int n ;
int Sum()
{
int max = -3724 , i ;
int mm = 0 ;
for( i = 1; i <= n ;i++)
{
mm += d[i] ;
if( mm > max ) max = mm ;
if( mm < 0 ) mm = 0;
}
return max ;
}
int dfs()
{
int i , j , ans = -1213 , cmp ;
for( i = 1; i <= n ;i++)
{
memset( d , 0 , sizeof(d) ) ;
for( j = i ; j <= n ;j++)// 枚举行的所以情况
{
for( int v = 1; v <= n ; v++)
d[v] += a[j][v] ;
cmp = Sum() ; // 列用 最大连续和处理
//printf( "%d\n" , cmp ) ;
if( ans < cmp ) ans = cmp ;
}
}
return ans ;
}
int main()
{
int i , j ;
while( scanf( "%d" , &n) != EOF )
{
for( i = 1; i <= n ;i++)
for( j = 1 ;j <= n ;j++)
scanf( "%d" , &a[i][j] ) ;
printf( "%d\n" , dfs( ) ) ;
}
}