zoukankan      html  css  js  c++  java
  • [LeetCode] 4. Median of Two Sorted Arrays

    转载至http://blog.csdn.net/hk2291976/article/details/51107778

    问题介绍

    这是个超级超级经典的分治算法!!这个问题大致是说,如何在给定的两个有序数组里面找其中的中值,或者变形问题,如何在2个有序数组数组中查找Top K的值(Top K的问题可以转换成求第k个元素的问题)。这个算法在很多实际应用中都会用到,特别是在当前大数据的背景下。

    我觉得下面的这个思路特别好,特别容易理解!!请按顺序看。是来自leetcode上的stellari英文答案,我整理并自己修改了一下。

    预备知识

    先解释下“割”

    我们通过切一刀,能够把有序数组分成左右两个部分,切的那一刀就被称为割(Cut),割的左右会有两个元素,分别是左边最大值和右边最小值。

    我们定义L = Max(LeftPart),R = Min(RightPart)

    Ps. 割可以割在两个数中间,也可以割在1个数上,如果割在一个数上,那么这个数即属于左边,也属于右边。(后面讲单数组中值问题的时候会说)

    比如说[2 3 5 7]这个序列,割就在3和5之间 
    [2 3 / 5 7] 
    中值就是(3+5)/2 = 4

    如果[2 3 4 5 6]这个序列,割在4上,我们可以把4分成2个 
    [2 3 (4/4) 5 7] 
    中值就是(4+4)/2 = 4

    这样可以保证不管中值是1个数还是2个数都能统一运算。

    割和第k个元素

    对于单数组,找其中的第k个元素特别好做,我们用割的思想就是:

    常识1:如果在k的位置割一下,然后A[k]就是L。换言之,就是如果左侧有k个元素,A[k]属于左边部分的最大值。(都是明显的事情,这个不用解释吧!)

    双数组

    我们设: 
    Ci为第i个数组的割。 
    Li为第i个数组割后的左元素. 
    Ri为第i个数组割后的右元素。

    这里写图片描述

    如何从双数组里取出第k个元素

    1. 首先Li<=Ri是肯定的(因为数组有序,左边肯定小于右边)
    2. 如果我们让L1<=R2 && L2<=R1

    这里写图片描述

    1. 那么左半边 全小于右半边,如果左边的元素个数相加刚好等于k,那么第k个元素就是Max(L1,L2),参考上面常识1。
    2. 如果 L1>R2,说明数组1的左边元素太大(多),我们把C1减小,把C2增大。L2>R1同理,把C1增大,C2减小。

    假设k=3

    对于 
    [1 4 7 9] 
    [2 3 5]

    设C1 = 2,那么C2 = k-C1 = 1 
    [1 4/7 9] 
    [2/3 5]

    这时候,L1(4)>R2(3),说明C1要减小,C2要增大,C1 = 1,C2=k-C1 = 2 
    [1/4 7 9] 
    [2 3/5]

    这时候,满足了L1<=R2 && L2<=R1,第3个元素就是Max(1,3) = 3。

    如果对于上面的例子,把k改成4就恰好是中值。

    下面具体来看特殊情况的中值问题。

    双数组的奇偶

    中值的关键在于,如何处理奇偶性,单数组的情况,我们已经讨论过了,那双数组的奇偶问题怎么办,m+n为奇偶处理方案都不同,

    让数组恒为奇数

    有没有办法让两个数组长度相加一定为奇数或偶数呢?

    其实有的,虚拟加入‘#’(这个trick在manacher算法中也有应用),让数组长度恒为奇数(2n+1恒为奇数)。 
    Ps.注意是虚拟加,其实根本没这一步,因为通过下面的转换,我们可以保证虚拟加后每个元素跟原来的元素一一对应

    之前len之后len
    [1 4 7 9] 4 [# 1 # 4 # 7 # 9 #] 9
    [2 3 5] 3 [# 2 # 3 # 5 #] 7

    映射关系

    这有什么好处呢,为什么这么加?因为这么加完之后,每个位置可以通过/2得到原来元素的位置。

    /原位置新位置除2后
    0 1 0 1
    5 2 5 2

    在虚拟数组里表示“割”

    不仅如此,割更容易,如果割在‘#’上等于割在2个元素之间,割在数字上等于把数字划到2个部分。

    奇妙的是不管哪种情况:

    Li = (Ci-1)/2 
    Ri = Ci/2

    例: 
    1. 割在4/7之间‘#’,C = 4,L=(4-1)/2=1 ,R=4/2=2 
    刚好是4和7的原来位置! 
    2. 割在3上,C = 3,L=(3-1)/2=1,R=3/2 =1,刚好都是3的位置!


    剩下的事情就好办了,把2个数组看做一个虚拟的数组A,目前有2m+2n+2个元素,割在m+n+1处,所以我们只需找到m+n+1位置的元素和m+n+2位置的元素就行了。 
    左边:A[m+n+1] = Max(L1+L2) 
    右边:A[m+n+2] = Min(R1+R2)

    Mid = (A[m+n+1]+A[m+n+2])/2 
    = (Max(L1+L2) + Min(R1+R2) )/2

    至于在两个数组里找割的方案,就是上面的方案。

    分治的思路

    有了上面的知识后,现在的问题就是如何利用分治的思想。

    怎么分?

    最快的分的方案是二分,有2个数组,我们对哪个做二分呢? 
    根据之前的分析,我们知道了,只要C1或C2确定,另外一个也就确定了。这里,为了效率,我们肯定是选长度较短的做二分,假设为C1。

    怎么治?

    也比较简单,我们之前分析了:就是比较L1,L2和R1,R2。 
    L1>R2,把C1减小,C2增大。—> C1向左二分 
    L2>R1,把C1增大,C2减小。—> C1向右二分

    越界问题

    如果C1或C2已经到头了怎么办? 
    这种情况出现在:如果有个数组完全小于或大于中值。可能有4种情况: 
    C1 = 0 —— 数组1整体都比中值大,L1 >R2,中值在2中 
    C2 = 0 —— 数组1整体都比中值小,L1

    代码

    class Solution {
        public double findMedianSortedArrays(int[] nums1, int[] nums2) {
            int m = nums1.length,n = nums2.length;
            if(m>n){        //保证nums1是短的那个数组
                return findMedianSortedArrays(nums2, nums1) ;
            }
            int L1=0,L2=0,R1=0,R2=0,c1,c2,low = 0, high = 2*m;  //我们目前是虚拟加了'#'所以数组1是2*m长度
            while(low <= high){        //二分
                c1 = (low + high) /2;
                c2 = m+n-c1;
                L1 = (c1 == 0) ? Integer.MIN_VALUE :nums1[(c1-1)/2];
                R1 = (c1 == 2*m) ? Integer.MAX_VALUE: nums1[c1/2];
                L2 = (c2 == 0) ? Integer.MIN_VALUE :nums2[(c2-1)/2];
                R2 = (c2 == 2*n) ? Integer.MAX_VALUE : nums2[c2/2];
                
                if(L1 > R2){
                    high = c1-1;
                }else if(L2 > R1){
                    low = c1 +1;
                }else
                    break;
                
            }
            return (Math.max(L1,L2)+ Math.min(R1,R2))/2.0;
        }
    }
     
  • 相关阅读:
    adb 连接 Android 手机的两种方式
    Jmeter GUI及NON GUI下实现分布式
    史上最全最细 App 自动化环境部署
    不懂Java代码,照样把jmeter指定数据写入execl
    Dockerfile 让你轻松创建属于你的镜像 (下)
    Dockerfile 让你轻轻松松创建属于你的镜像 (上)
    Python vs Java (一):史上最全变量类型区别,99.99%的人都收藏了
    浏览器F12调试器定位系统前后端bug
    cookie,session
    App 抓包提示网络异常怎么破?(抓包HTTPS)
  • 原文地址:https://www.cnblogs.com/271934Liao/p/8472080.html
Copyright © 2011-2022 走看看