''' ##卷积神经网络,两个卷积层:32和64个特征平面,两个全连接层1024和10个神经元 ''' #加载数据,设定batch mnist = input_data.read_data_sets('MNIST_data/',one_hot=True) batch_size = 100 n_batch = mnist.train.num_examples // batch_size #初始化权值 def weight_var(shape): return tf.Variable(tf.truncated_normal(shape,stddev=0.1)) #初始化偏移值 def bias_var(shape): return tf.Variable(tf.constant(0.1,shape=shape)) #卷积操作 def conv2d(x,W): return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME') #池化操作 def max_pool_2x2(x): return tf.nn.max_pool(x,strides=[1,2,2,1],ksize=[1,2,2,1],padding='SAME') #定义三个占位符,数据,标签和dropout x = tf.placeholder(tf.float32,shape=[None,784]) y = tf.placeholder(tf.float32,shape=[None,10]) keep_prob = tf.placeholder(tf.float32) #把x变成一个4d向量,其第2、第3维对应图片的宽、高,最后一维代表图片的颜色通道数 x_image = tf.reshape(x,[-1,28,28,1]) #卷积层1,32个特征平面,卷积操作后[-1,28,28,32],池化操作后[-1,14,14,32] W_conv1 = weight_var([5,5,1,32]) b_conv1 = bias_var([32]) h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1) h_pool1 = max_pool_2x2(h_conv1) #卷积层2,64个特征平面,卷积操作后[-1,14,14,64],池化操作后[-1,7,7,64] W_conv2 = weight_var([5,5,32,64]) b_conv2 = bias_var([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2) h_pool2 = max_pool_2x2(h_conv2) #全连接层1,1024个神经元,先将卷积层2的输出扁平化处理 h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64]) W_fc1 = weight_var([7*7*64,1024]) b_fc1 = bias_var([1024]) h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1) + b_fc1) h_fc1 = tf.nn.dropout(h_fc1,keep_prob) #全连接层2,10个神经元 W_fc2 = weight_var([1024,10]) b_fc2 = bias_var([10]) y_ = tf.nn.softmax(tf.matmul(h_fc1,W_fc2)+b_fc2) #交叉熵损失函数,Adam优化器 cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=y_)) train = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #准确率 correct = tf.equal(tf.argmax(y,1),tf.argmax(y_,1)) accuracy = tf.reduce_mean(tf.cast(correct,tf.float32)) #变量初始化 init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for iteration in range(21): for batch in range(n_batch): train_xs,train_ys = mnist.train.next_batch(batch_size) sess.run(train,feed_dict={x:train_xs,y:train_ys,keep_prob:0.5}) print('iter: ',iteration,'accuracy: ',sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1}))