Numpy 数组操作
Numpy 中包含了一些函数用于处理数组,大概可分为以下几类:
修改数组形状
函数 | 描述 |
---|---|
reshape |
不改变数据的条件下修改形状 |
flat |
数组元素迭代器 |
flatten |
返回一份数组拷贝,对拷贝所做的修改不会影响原始数组 |
ravel |
返回展开数组 |
numpy.reshape
numpy.reshape 函数可以在不改变数据的条件下修改形状,格式如下: numpy.reshape(arr, newshape, order='C')
arr
:要修改形状的数组newshape
:整数或者整数数组,新的形状应当兼容原有形状- order:'C' -- 按行,'F' -- 按列,'A' -- 原顺序,'k' -- 元素在内存中的出现顺序。
实例
import numpy as np a = np.arange(8) print ('原始数组:') print (a) print ('
') b = a.reshape(4,2) print ('修改后的数组:') print (b)
输出结果如下:
原始数组:
[0 1 2 3 4 5 6 7]
修改后的数组:
[[0 1]
[2 3]
[4 5]
[6 7]]
numpy.ndarray.flat
numpy.ndarray.flat 是一个数组元素迭代器,实例如下:
实例
import numpy as np a = np.arange(9).reshape(3,3) print ('原始数组:') for row in a: print (row) #对数组中每个元素都进行处理,可以使用flat属性,该属性是一个数组元素迭代器: print ('迭代后的数组:') for element in a.flat: print (element)
输出结果如下:
原始数组:
[0 1 2]
[3 4 5]
[6 7 8]
迭代后的数组:
0
1
2
3
4
5
6
7
8
numpy.ndarray.flatten
numpy.ndarray.flatten 返回一份数组拷贝,对拷贝所做的修改不会影响原始数组,格式如下:
ndarray.flatten(order='C')
参数说明:
- order:'C' -- 按行,'F' -- 按列,'A' -- 原顺序,'K' -- 元素在内存中的出现顺序。
实例
import numpy as np a = np.arange(8).reshape(2,4) print ('原数组:') print (a) print ('
') # 默认按行 print ('展开的数组:') print (a.flatten()) print ('
') print ('以 F 风格顺序展开的数组:') print (a.flatten(order = 'F'))
输出结果如下:
原数组:
[[0 1 2 3]
[4 5 6 7]]
展开的数组:
[0 1 2 3 4 5 6 7]
以 F 风格顺序展开的数组:
[0 4 1 5 2 6 3 7]
numpy.ravel
numpy.ravel() 展平的数组元素,顺序通常是"C风格",返回的是数组视图(view,有点类似 C/C++引用reference的意味),修改会影响原始数组。
该函数接收两个参数:
numpy.ravel(a, order='C')
参数说明:
- order:'C' -- 按行,'F' -- 按列,'A' -- 原顺序,'K' -- 元素在内存中的出现顺序。
实例
import numpy as np a = np.arange(8).reshape(2,4) print ('原数组:') print (a) print ('
') print ('调用 ravel 函数之后:') print (a.ravel()) print ('
') print ('以 F 风格顺序调用 ravel 函数之后:') print (a.ravel(order = 'F'))
输出结果如下:
原数组:
[[0 1 2 3]
[4 5 6 7]]
调用 ravel 函数之后:
[0 1 2 3 4 5 6 7]
以 F 风格顺序调用 ravel 函数之后:
[0 4 1 5 2 6 3 7]
翻转数组
函数 | 描述 |
---|---|
transpose |
对换数组的维度 |
ndarray.T |
和 self.transpose() 相同 |
rollaxis |
向后滚动指定的轴 |
swapaxes |
对换数组的两个轴 |
numpy.transpose
numpy.transpose 函数用于对换数组的维度,格式如下:
numpy.transpose(arr, axes)
参数说明:
arr
:要操作的数组axes
:整数列表,对应维度,通常所有维度都会对换。
实例
import numpy as np a = np.arange(12).reshape(3,4) print ('原数组:') print (a ) print ('
') print ('对换数组:') print (np.transpose(a))
输出结果如下:
原数组:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
对换数组:
[[ 0 4 8]
[ 1 5 9]
[ 2 6 10]
[ 3 7 11]]
numpy.ndarray.T 类似 numpy.transpose:
实例
import numpy as np a = np.arange(12).reshape(3,4) print ('原数组:') print (a) print ('
') print ('转置数组:') print (a.T)
输出结果如下:
原数组:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
转置数组:
[[ 0 4 8]
[ 1 5 9]
[ 2 6 10]
[ 3 7 11]]
numpy.rollaxis
numpy.rollaxis 函数向后滚动特定的轴到一个特定位置,格式如下:
numpy.rollaxis(arr, axis, start)
参数说明:
arr
:数组axis
:要向后滚动的轴,其它轴的相对位置不会改变start
:默认为零,表示完整的滚动。会滚动到特定位置。
实例
import numpy as np # 创建了三维的 ndarray a = np.arange(8).reshape(2,2,2) print ('原数组:') print (a) print ('
') # 将轴 2 滚动到轴 0(宽度到深度) print ('调用 rollaxis 函数:') print (np.rollaxis(a,2)) # 将轴 0 滚动到轴 1:(宽度到高度) print ('
') print ('调用 rollaxis 函数:') print (np.rollaxis(a,2,1))
输出结果如下:
原数组:
[[[0 1]
[2 3]]
[[4 5]
[6 7]]]
调用 rollaxis 函数:
[[[0 2]
[4 6]]
[[1 3]
[5 7]]]
调用 rollaxis 函数:
[[[0 2]
[1 3]]
[[4 6]
[5 7]]]
numpy.swapaxes
numpy.swapaxes 函数用于交换数组的两个轴,格式如下:
numpy.swapaxes(arr, axis1, axis2)
arr
:输入的数组axis1
:对应第一个轴的整数axis2
:对应第二个轴的整数
实例
import numpy as np # 创建了三维的 ndarray a = np.arange(8).reshape(2,2,2) print ('原数组:') print (a) print ('
') # 现在交换轴 0(深度方向)到轴 2(宽度方向) print ('调用 swapaxes 函数后的数组:') print (np.swapaxes(a, 2, 0))
输出结果如下:
原数组:
[[[0 1]
[2 3]]
[[4 5]
[6 7]]]
调用 swapaxes 函数后的数组:
[[[0 4]
[2 6]]
[[1 5]
[3 7]]]
修改数组维度
维度 | 描述 |
---|---|
broadcast |
产生模仿广播的对象 |
broadcast_to |
将数组广播到新形状 |
expand_dims |
扩展数组的形状 |
squeeze |
从数组的形状中删除一维条目 |
numpy.broadcast
numpy.broadcast 用于模仿广播的对象,它返回一个对象,该对象封装了将一个数组广播到另一个数组的结果。
该函数使用两个数组作为输入参数,如下实例:
实例
import numpy as np x = np.array([[1], [2], [3]]) y = np.array([4, 5, 6]) # 对 y 广播 x b = np.broadcast(x,y) # 它拥有 iterator 属性,基于自身组件的迭代器元组 print ('对 y 广播 x:') r,c = b.iters # Python3.x 为 next(context) ,Python2.x 为 context.next() print (next(r), next(c)) print (next(r), next(c)) print ('
') # shape 属性返回广播对象的形状 print ('广播对象的形状:') print (b.shape) print ('
') # 手动使用 broadcast 将 x 与 y 相加 b = np.broadcast(x,y) c = np.empty(b.shape) print ('手动使用 broadcast 将 x 与 y 相加:') print (c.shape) print ('
') c.flat = [u + v for (u,v) in b] print ('调用 flat 函数:') print (c) print ('
') # 获得了和 NumPy 内建的广播支持相同的结果 print ('x 与 y 的和:') print