zoukankan      html  css  js  c++  java
  • 【SRM 717 DIV2 C】DerangementsDiv2

    Problem Statement

    You are given two ints: n and m.
    Let D be the number of permutations of the set {1,2,…,n+m} such that the first m values are not fixed points of the permutation. Formally, we are interested in permutations p such that for each j between 1 and m, inclusive, we have p(j) != j.
    Compute and return D modulo 1,000,000,007.
    Definition

    Class:
    DerangementsDiv2
    Method:
    count
    Parameters:
    int, int
    Returns:
    int
    Method signature:
    int count(int n, int m)
    (be sure your method is public)
    Limits

    Time limit (s):
    2.000
    Memory limit (MB):
    512
    Stack limit (MB):
    512

    Constraints

    n will be between 0 and 50, inclusive.

    m will be between 1 and 50, inclusive.
    Examples
    0)

    0
    2
    Returns: 1
    Here we are looking for permutations of {1, 2} such that p(1) != 1 and p(2) != 2. There is only one such permutation: the permutation (2, 1). In other words, the permutation p such that p(1) = 2 and p(2) = 1.
    1)

    2
    1
    Returns: 4
    Here we are counting permutations of {1, 2, 3} such that p(1) != 1. There are four such permutations: (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). Here, (a, b, c) denotes a permutation p for which p(1) = a, p(2) = b, and p(3) = c.
    2)

    1
    2
    Returns: 3
    This time we want permutations of {1, 2, 3} such that p(1) != 1 and p(2) != 2. The three such permutations are (2, 1, 3), (2, 3, 1), and (3, 1, 2).
    3)

    3
    5
    Returns: 21234

    4)

    20
    27
    Returns: 88437461
    Watch out for integer overflow.

    【题目链接】:

    【题意】

    给你两个整数n和m;
    然后让你求1..n+m的一些满足以下要求的排列p的个数:
    要求i从1..m满足p[i]!=i;

    【题解】

    容斥原理搞;
    设ci表示1..m中有i个位置满足pi==i的方案数;
    ci=C(m,i)*(n+m-i)!
    则答案就为(n+m)!-c1∪c2∪c3…..∪cm
    减号右边那个东西,用容斥原理搞
    为了不重复计数;
    先加上每一个位置都不同的方案,然后减去有两个位置不同的方案,然后加上有3个位置不同的方案,然后减去有4个位置不同的方案…

    【Number Of WA

    0

    【反思】

    取模过程中会出现负数的话,要注意加上MOD数;

    【完整代码】

    #include <bits/stdc++.h>
    using namespace std;
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    #define LL long long
    #define rep1(i,a,b) for (int i = a;i <= b;i++)
    #define rep2(i,a,b) for (int i = a;i >= b;i--)
    #define mp make_pair
    #define pb push_back
    #define fi first
    #define se second
    #define ms(x,y) memset(x,y,sizeof x)
    #define Open() freopen("F:\rush.txt","r",stdin)
    #define Close() ios::sync_with_stdio(0)
    
    typedef pair<int, int> pii;
    typedef pair<LL, LL> pll;
    
    const int dx[9] = { 0,1,-1,0,0,-1,-1,1,1 };
    const int dy[9] = { 0,0,0,-1,1,-1,1,-1,1 };
    const double pi = acos(-1.0);
    const int N = 50+5;
    const LL MOD = (int) 1e9 + 7;
    //head
    
    LL c[N][N],fac[N+N];
    
    class DerangementsDiv2
    {
    public:
        int count(int n, int m)
        {
            rep1(i, 1, 50)
                c[i][i] = c[i][0] = 1;
            rep1(i, 1, 50)
                rep1(j, 1, i - 1)
                    c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % MOD;
            fac[0] = 1;
            rep1(i, 1, 100)
                fac[i] = (fac[i - 1] * i) % MOD;
            LL ans = fac[n + m],temp = 0,p = 1;
            rep1(i, 1, m) {
                temp += (p*c[m][i]%MOD + MOD) % MOD*fac[n + m - i] % MOD;
                p = -p;
            }
            ans = ((ans - temp)%MOD + MOD) % MOD;
            return (int) ans;
        }
    };
  • 相关阅读:
    oracle的分析函数over 及开窗函数
    LOL源代码娜美皮肤免费领取
    vue实用组件——圆环百分比进度条
    dom操作获取长/宽/距离等值的若干方法
    dom操作获取元素的若干方法
    dom操作操作元素属性的若干方法
    vue实用组件——表格
    vue实用组件——页面公共头部
    js10种循环方法
    dom操作创建节点/插入节点
  • 原文地址:https://www.cnblogs.com/AWCXV/p/7626227.html
Copyright © 2011-2022 走看看