zoukankan      html  css  js  c++  java
  • POJ 3233 Matrix Power Series 矩阵快速幂

    if(n%2==0)s(n)=s(n/2)+s(n/2)*A^(n/2)

    else s(n)=s((n-1)/2)+s((n-1)/2)*A^((n-1)/2) + A^n。

    //#pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<algorithm>
    #include<iostream>
    #include<sstream>
    #include<cmath>
    #include<climits>
    #include<string>
    #include<map>
    #include<queue>
    #include<vector>
    #include<stack>
    #include<set>
    using namespace std;
    typedef long long ll;
    typedef pair<int,int> pii;
    #define pb(a) push_back(a)
    #define INF 0x1f1f1f1f
    #define lson idx<<1,l,mid
    #define rson idx<<1|1,mid+1,r
    #define PI  3.1415926535898
    template<class T> T min(const T& a,const T& b,const T& c) {
        return min(min(a,b),min(a,c));
    }
    template<class T> T max(const T& a,const T& b,const T& c) {
        return max(max(a,b),max(a,c));
    }
    void debug() {
    #ifdef ONLINE_JUDGE
    #else
    
        freopen("d:\in.txt","r",stdin);
       // freopen("d:\out1.txt","w",stdout);
    #endif
    }
    int getch() {
        int ch;
        while((ch=getchar())!=EOF) {
            if(ch!=' '&&ch!='
    ')return ch;
        }
        return EOF;
    }
    
    int n,m;
    struct Matrix
    {
        int da[30][30];
        Matrix operator * (const Matrix &ans)
        {
            Matrix res;
            for(int i=0;i<n;i++)
            {
                for(int j=0;j<n;j++)
                {
                    res.da[i][j]=0;
                    for(int k=0;k<n;k++)
                        res.da[i][j]=(res.da[i][j]+da[i][k]*ans.da[k][j])%m;
                }
            }
            return res;
        }
        Matrix operator +(const Matrix &ans)
        {
            Matrix res;
            for(int i=0;i<n;i++)
                for(int j=0;j<n;j++)
                    res.da[i][j]=(da[i][j]+ans.da[i][j])%m;
            return res;
        }
    };
    Matrix base;
    Matrix f(int n)
    {
        if(n==1)return base;
        if(n%2==0)
        {
            Matrix res=f(n/2);
            return res*res;
        }else
        {
            Matrix res=f(n/2);
            return  res*res*base;
        }
    }
    Matrix s(int k)
    {
        if(k==1)
            return base;
        if(k%2==0)
        {
            Matrix res;
            res=s(k/2);
            return res+res*f(k/2);
        }else
        {
            Matrix res;
            res=s(k/2);
            return res+res*f(k/2)+f(k);
        }
    }
    int main()
    {
        int k;
        while(scanf("%d%d%d",&n,&k,&m)!=EOF)
        {
            for(int i=0;i<n;i++)
                for(int j=0;j<n;j++)
                {
                    scanf("%d",&base.da[i][j]);
                    base.da[i][j]%=m;
                }
            Matrix x=f(3);
            Matrix res=s(k);
            for(int i=0;i<n;i++)
            {
                for(int j=0;j<n;j++)
                    printf("%d%c",res.da[i][j],j+1==n?'
    ':' ');
            }
        }
        return 0;
    }
    View Code
  • 相关阅读:
    java实现第六届蓝桥杯立方体自身
    Java实现第八届蓝桥杯包子凑数
    Snapshot Standby
    [NOI2014]购票
    DG的数据保护模式
    严格次小生成树
    Java实现第八届蓝桥杯拉马车
    Java实现第八届蓝桥杯拉马车
    Java实现第八届蓝桥杯迷宫
    在物理 Data Guard 中对异构主备系统的支持 (文档 ID 1602437.1)
  • 原文地址:https://www.cnblogs.com/BMan/p/3378671.html
Copyright © 2011-2022 走看看