zoukankan      html  css  js  c++  java
  • Codeforces 1108 E2(线段树+思维)

    传送们

    题意:

    给你一个长度为nn的数列bb、以及mm个区间。
    你可以选取11个或多个这样的区间aia_i,使得令区间aia_i所对应的所有值bib_i都减11。你最终要使得maxi=1nbimini=1nbimaxlimits_{i=1}^{n}b_i - minlimits_{i=1}^{n}b_i
    最大。
    问你方案数以及最大值。

    题目分析:

    E1E1中,我们可以通过这个题中优美的性质,对于每一个区间aia_i,通过枚举在这个区间的以及不在这个区间的两个点,我们就可以用O(b2m)O(b^2m)的时间复杂度进行求解。

    但是在这个题中,nn的范围在10510^5的级别,因此我们需要用一些数据结构进行优化。

    我们考虑这几种情况,对于每一个区间操作,如果区间内的最小值恰好在要更新的区间内,而最大值不在,则此时答案必定更优;如果最小值和最大值恰在要更新的区间内,则答案不变;如果最大值在而最小值不在,则答案必定更差。

    至此,我们可以发现,要使得答案不会变差,当且仅当最小值恰好在要更新的区间内。

    但是我们目前并不知道哪一个点作为最小值点更优,因此我们可以枚举最小值点的位置pospos。根据我们之前的分析,最小值点能够防止答案变差,因此那些能够把我们所枚举的pospos包含的区间必定要更新。而一个区间要包含一个点,则这个区间至少是那些以该点为起始点的区间。因此我们只需要在枚举最小值点位置的过程中,不断的进行区间1-1即可。

    而我们需要注意的是,在我们枚举的过程中,倘若我们之前更新的某一个区间不能包含当前的位置,我们需要把之前的影响消去,否则会导致将区间的最大值也减11,导致答案不正确。因此,我们只需要在之前枚举的过程的最后,把以当前位置pospos为结尾的所有区间的影响消去即可。

    因为存在区间更新以及区间求最大值,因此我们可以用线段树进行维护。

    总的时间复杂度为O(nlogn)O(nlogn)

    #include <bits/stdc++.h>
    #define maxn 100005
    using namespace std;
    typedef pair<int,int>pll;
    pll q[maxn];
    int a[maxn];
    vector<int>vec1[maxn];
    vector<int>vec2[maxn];
    vector<int>res;
    
    
    struct Tree{
        int add,maxx;
    }tr[maxn<<2];
    void push_up(int rt){
        tr[rt].maxx=max(tr[rt<<1].maxx,tr[rt<<1|1].maxx);
    }
    void push_down(int rt){
        if(tr[rt].add){
            tr[rt<<1].maxx+=tr[rt].add;
            tr[rt<<1|1].maxx+=tr[rt].add;
            tr[rt<<1].add+=tr[rt].add;
            tr[rt<<1|1].add+=tr[rt].add;
            tr[rt].add=0;
        }
    }
    void build(int l,int r,int rt){
        if(l==r){
            tr[rt].maxx=a[l];
            return ;
        }
        int mid=(l+r)>>1;
        build(l,mid,rt<<1);
        build(mid+1,r,rt<<1|1);
        push_up(rt);
    }
    void update(int L,int R,int l,int r,int rt,int C){
        if(L<=l&&R>=r){
            tr[rt].add+=C;
            tr[rt].maxx+=C;
            return ;
        }
        int mid=(l+r)>>1;
        push_down(rt);
        if(L<=mid) update(L,R,l,mid,rt<<1,C);
        if(R>mid) update(L,R,mid+1,r,rt<<1|1,C);
        push_up(rt);
    }
    int query(int L,int R,int l,int r,int rt){
        if(L<=l&&R>=r){
            return tr[rt].maxx;
        }
        int mid=(l+r)>>1;
        push_down(rt);
        int maxx=-0x3f3f3f3f;
        if(L<=mid) return max(maxx,query(L,R,l,mid,rt<<1));
        if(R>mid) return max(maxx,query(L,R,mid+1,r,rt<<1|1));
        push_up(rt);
    }
    
    int main()
    {
        int n,m;
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++) scanf("%d",&a[i]);
        build(1,n,1);
        for(int i=1;i<=m;i++){
            scanf("%d%d",&q[i].first,&q[i].second);
            vec1[q[i].first].push_back(q[i].second);//以该点为起点的区间的右端点
            vec2[q[i].second].push_back(q[i].first);//以该点为终点的区间的左短点
        }
        int maxx=-0x3f3f3f3f;
        int pos=0;
        for(int i=1;i<=n;i++){
            int tmp=a[i];
            for(int j=0;j<vec1[i].size();j++){
                update(i,vec1[i][j],1,n,1,-1);//区间更新-1
            }
            int res=query(1,n,1,n,1)-query(i,i,1,n,1);//区间求和,等于区间最大值-当前值(最小值)
            if(maxx<res){
                maxx=res;
                pos=i;
            }
            for(int j=0;j<vec2[i].size();j++){
                update(vec2[i][j],i,1,n,1,1);
            }
        }
        cout<<maxx<<endl;
        int cnt=0;
        for(int i=1;i<=m;i++){
            if(q[i].first<=pos&&pos<=q[i].second){
                res.push_back(i);
            }
            cnt++;
        }
        cout<<res.size()<<endl;
        for(auto it:res){
            cout<<it<<" ";
        }
        puts("");
    }
    
    
  • 相关阅读:
    振动传感器
    水银开关式碰撞传感器
    倾斜传感器
    光敏传感器
    激光传感器的使用
    html字符串 转 json
    浏览器播放视频加快进功能
    处理箭头函数单个参数括号规则冲突
    VUE-directive指令之语法、引用、钩子函数、参数
    win10系统自动升级怎么还原到以前的系统
  • 原文地址:https://www.cnblogs.com/Chen-Jr/p/11007167.html
Copyright © 2011-2022 走看看