zoukankan      html  css  js  c++  java
  • HDU 4578 Transformation

    题意很简单,说是裸的线段树。然而我觉得十分有难度。。。。

    首先第一步:将所有数值看作是ax+b的形式。对于乘操作 变成kax+kb,对于加操作变成ax+b+c;

    第二步操作顺序:因为操作顺序会影响答案(一开始还想每个区间维护一个queue结果在TLE和MLE之间徘徊)

    首先最优的一定是设置为一个值set操作,因为这个操作会清空前面的操作使得ax+b中a=0,b=0

    第二个操作就是mul乘操作,这里就要注意了执行mul操作之前一定要对如果区间的add值不为0,一定要对区间add值进行更新。变成add*系数

    第三个操作就是加。

    第三步:如果push_down,lazy如何下推

    对于ax+b如果一个区间要push_down那么他可以变成kax+kb+c k为mul系数,c为加系数。注意k可以为1,c可以等于0,不影响下面的结果

    第一sum1,一次方和 这个太简单了就不说了

    第二sum2,注意有(x + y) ^ 2 = x ^ 2 + y ^ 2 + 2xy 在本题中,每一项变成了

    sum(a[i]x[i] + b[i])^2 和新设置的值sum(ka[i]x[i] + kb[i] + c) ^ 2 这里是最终的和的公式

    为了方便看,你只需要对随便一项展开就可以看到如何下推,详情请看代码即可知道,展开后可以提出k^2还有什么忘了

    的一个项,你展开就可以看到如果做的

    第三 sum3 同sum2 只是更复杂一些 同样展开我记得有k^3,k^2*c,k*c^2这2个可以提出来

    下面就是代码

    #include <map>
    #include <set>
    #include <list>
    #include <cmath>
    #include <ctime>
    #include <deque>
    #include <stack>
    #include <queue>
    #include <cctype>
    #include <cstdio>
    #include <string>
    #include <vector>
    #include <climits>
    #include <cstdlib>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define LL long long
    #define PI 3.1415926535897932626
    using namespace std;
    int gcd(int a, int b) {return a % b == 0 ? b : gcd(b, a % b);}
    const int MAXN = 100010;
    const int INF = 0x3f3f3f3f;
    const int MOD = 10007;
    
    struct node
    {
        int l,r;
        int flagset,flagadd,flagmul;
        int sum1,sum2,sum3;
    }tree[MAXN * 4];
    
    void build(int id,int l,int r)
    {
        tree[id].l = l;
        tree[id].r = r;
        tree[id].flagset = tree[id].flagadd = 0;
        tree[id].flagmul = 1;
        tree[id].sum1 = tree[id].sum2 = tree[id].sum3 = 0;
        if (l == r) return;
        int mid = (l + r) / 2;
        build(id * 2,l,mid);
        build(id * 2 + 1,mid + 1,r);
    }
    
    void push_up(int id)
    {
        if (tree[id].l == tree[id].r) return;
        tree[id].sum1 = (tree[id * 2].sum1 + tree[id * 2 + 1].sum1) % MOD;
        tree[id].sum2 = (tree[id * 2].sum2 + tree[id * 2 + 1].sum2) % MOD;
        tree[id].sum3 = (tree[id * 2].sum3 + tree[id * 2 + 1].sum3) % MOD;
    }
    void push_down(int id)
    {
        if (tree[id].l == tree[id].r)return;
        if (tree[id].flagset != 0)
        {
            tree[id * 2].flagset = tree[id * 2 + 1].flagset = tree[id].flagset;
            tree[id * 2].flagmul = tree[id * 2 + 1].flagmul = 1;
            tree[id * 2].flagadd = tree[id * 2 + 1].flagadd = 0;
            tree[id * 2].sum1 = (tree[id * 2].r - tree[id * 2].l + 1) * tree[id].flagset % MOD;
            tree[id * 2].sum2 = (tree[id * 2].r - tree[id * 2].l + 1) * tree[id].flagset % MOD * tree[id].flagset % MOD;
            tree[id * 2].sum3 = (tree[id * 2].r - tree[id * 2].l + 1) * tree[id].flagset % MOD * tree[id].flagset % MOD * tree[id].flagset % MOD;
            tree[id * 2 + 1].sum1 = (tree[id * 2 + 1].r - tree[id * 2 + 1].l + 1) * tree[id].flagset % MOD;
            tree[id * 2 + 1].sum2 = (tree[id * 2 + 1].r - tree[id * 2 + 1].l + 1) * tree[id].flagset % MOD * tree[id].flagset % MOD;
            tree[id * 2 + 1].sum3 = (tree[id * 2 + 1].r - tree[id * 2 + 1].l + 1) * tree[id].flagset % MOD * tree[id].flagset % MOD * tree[id].flagset % MOD;
            tree[id].flagset = 0;
        }
        if (tree[id].flagadd != 0 || tree[id].flagmul != 1)
        {
            tree[id * 2].flagadd = ( tree[id].flagmul * tree[id * 2].flagadd % MOD + tree[id].flagadd )%MOD;
            tree[id * 2].flagmul = tree[id * 2].flagmul * tree[id].flagmul % MOD;
            int sum1,sum2,sum3;
            sum1 = (tree[id * 2].sum1 * tree[id].flagmul % MOD + (tree[id * 2].r - tree[id * 2].l + 1) * tree[id].flagadd % MOD) % MOD;
            sum2 = (tree[id].flagmul * tree[id].flagmul % MOD * tree[id * 2].sum2 % MOD + 2 * tree[id].flagadd * tree[id].flagmul % MOD * tree[id * 2].sum1 % MOD + (tree[id * 2].r - tree[id * 2].l + 1) * tree[id].flagadd % MOD * tree[id].flagadd % MOD) % MOD;
            sum3 = tree[id].flagmul * tree[id].flagmul % MOD * tree[id].flagmul % MOD * tree[id * 2].sum3 % MOD;
            sum3 = (sum3 + 3 * tree[id].flagmul % MOD * tree[id].flagmul % MOD * tree[id].flagadd % MOD * tree[id * 2].sum2) % MOD;
            sum3 = (sum3 + 3 * tree[id].flagmul % MOD * tree[id].flagadd % MOD * tree[id].flagadd % MOD * tree[id * 2].sum1) % MOD;
            sum3 = (sum3 + (tree[id * 2].r - tree[id * 2].l + 1) * tree[id].flagadd % MOD * tree[id].flagadd % MOD * tree[id].flagadd % MOD) % MOD;
            tree[id * 2].sum1 = sum1;
            tree[id * 2].sum2 = sum2;
            tree[id * 2].sum3 = sum3;
            tree[id * 2 + 1].flagadd = ( tree[id].flagmul * tree[id * 2 + 1].flagadd % MOD + tree[id].flagadd )%MOD;
            tree[id * 2 + 1].flagmul = tree[id * 2 + 1].flagmul * tree[id].flagmul % MOD;
            sum1 = (tree[id * 2 + 1].sum1 * tree[id].flagmul % MOD + (tree[id * 2 + 1].r - tree[id * 2 + 1].l + 1) * tree[id].flagadd % MOD) % MOD;
            sum2 = (tree[id].flagmul * tree[id].flagmul % MOD * tree[id * 2 + 1].sum2 % MOD + 2 * tree[id].flagadd * tree[id].flagmul % MOD * tree[id * 2 + 1].sum1 % MOD + (tree[id * 2 + 1].r - tree[id * 2 + 1].l + 1) * tree[id].flagadd % MOD * tree[id].flagadd % MOD)% MOD;
            sum3 = tree[id].flagmul * tree[id].flagmul % MOD * tree[id].flagmul % MOD * tree[id * 2 + 1].sum3 % MOD;
            sum3 = (sum3 + 3 * tree[id].flagmul % MOD * tree[id].flagmul % MOD * tree[id].flagadd % MOD * tree[id * 2 + 1].sum2) % MOD;
            sum3 = (sum3 + 3 * tree[id].flagmul % MOD * tree[id].flagadd % MOD * tree[id].flagadd % MOD * tree[id * 2 + 1].sum1) % MOD;
            sum3 = (sum3 + (tree[id * 2 + 1].r - tree[id * 2 + 1].l + 1) * tree[id].flagadd % MOD * tree[id].flagadd % MOD * tree[id].flagadd % MOD) % MOD;
            tree[id * 2 + 1].sum1 = sum1;
            tree[id * 2 + 1].sum2 = sum2;
            tree[id * 2 + 1].sum3 = sum3;
            tree[id].flagadd = 0;
            tree[id].flagmul = 1;
        }
    }
    
    void update(int id,int l,int r,int type,int val)
    {
        if (tree[id].l == l && tree[id].r == r)
        {
            val %= MOD;
            if (type == 1)
            {
                tree[id].flagadd = (tree[id].flagadd + val) % MOD;
                tree[id].sum3 = (tree[id].sum3 + 3 * tree[id].sum2 % MOD * val % MOD + 3 * tree[id].sum1 % MOD * val % MOD * val % MOD + (tree[id].r - tree[id].l + 1) * val % MOD * val % MOD * val % MOD) % MOD;
                tree[id].sum2 = (tree[id].sum2 + 2 * tree[id].sum1 % MOD * val % MOD + (tree[id].r - tree[id].l + 1)* val % MOD * val % MOD) % MOD;
                tree[id].sum1 = (tree[id].sum1 + (tree[id].r - tree[id].l + 1) * val % MOD)%MOD;
            }
            else if (type == 2)
            {
                tree[id].flagadd = (tree[id].flagadd * val) % MOD;
                tree[id].flagmul = (tree[id].flagmul * val) % MOD;
                tree[id].sum1 = tree[id].sum1 * val % MOD;
                tree[id].sum2 = tree[id].sum2 * val % MOD * val % MOD;
                tree[id].sum3 = tree[id].sum3 * val % MOD * val % MOD * val % MOD;
            }
            else
            {
                tree[id].flagmul = 1;
                tree[id].flagadd = 0;
                tree[id].flagset = val % MOD;
                tree[id].sum1 = val * (tree[id].r - tree[id].l + 1) % MOD;
                tree[id].sum2 = val * (tree[id].r - tree[id].l + 1) % MOD * val % MOD;
                tree[id].sum3 = val * (tree[id].r - tree[id].l + 1) % MOD * val % MOD * val % MOD;
            }
            return;
        }
        push_down(id);
        int mid = (tree[id].l + tree[id].r) / 2;
        if (l > mid) update(id * 2 + 1,l,r,type,val);
        else if (r <= mid) update(id * 2,l,r,type,val);
        else
        {
            update(id * 2,l,mid,type,val);
            update(id * 2 + 1,mid + 1,r,type,val);
        }
        push_up(id);
    }
    
    int query(int id,int l,int r,int ask)
    {
        if (tree[id].l == l && tree[id].r == r)
        {
            //printf("%d %d %I64d
    ",tree[id].sum2);
            if (ask == 1) return tree[id].sum1;
            else if (ask == 2) return tree[id].sum2;
            else return tree[id].sum3;
        }
        push_down(id);
        int mid = (tree[id].l + tree[id].r) / 2;
        if (l > mid) return query(id * 2 + 1,l,r,ask) % MOD;
        else if (r <= mid) return query(id * 2,l,r,ask) % MOD;
        else
        {
            return (query(id * 2,l,mid,ask) % MOD + query(id * 2 + 1,mid + 1,r,ask) % MOD) % MOD;
        }
    }
    
    int main()
    {
       //freopen("sample.txt","r",stdin);
        int N,M;
        while (scanf("%d%d",&N,&M) != EOF)
        {
            if (N == 0 && M == 0) break;
            build(1,1,N);
            while (M--)
            {
                int x,y,z,op;
                scanf("%d%d%d%d",&op,&x,&y,&z);
                if (op == 4) printf("%d
    ",query(1,x,y,z) % MOD);
                else update(1,x,y,op,z);
            }
        }
        return 0;
    }
    View Code
  • 相关阅读:
    接口
    java基础
    java的反射
    按照字典序打印所有的字符串
    求幂的问题
    时间复杂度与空间复杂度
    孩子们的游戏(圆圈中最后剩下的数)
    约瑟夫环问题
    翻转单词顺序列
    复杂链表的复制
  • 原文地址:https://www.cnblogs.com/Commence/p/4871352.html
Copyright © 2011-2022 走看看