据说这是一套比较正常的考卷,,,嗯,,或许吧,
而且,,整个小组其他人的分数加起来也不如apt123大神多,,
最终,3道题一共30分滚粗
T1:
树形dp题目,感觉我这种dp渣渣是想不出方程了,,%%%%一下apt大神,,
正解:
设dp[i][j]表示根节点为i,距离i最近的被选点的距离大于等于j时的最大节点数,dp[i][0]即为答案
转移:
设f[i][0] = a[i],表示选了a[i]后的初始状态,转移方程为:
dp[i][j] = max(dp[i][j] + dp[son[i]][max(k - j, j - i)], dp[i][max(k - j + 1, j)] + dp[son[i]][j - 1]); j = 1 -> k
dp[i][j] = max(dp[i][j], dp[i][j+1]);
考虑方程,显然设置状态时并没有考虑到同一个根的不同儿子之间的冲突情况,所以必须在转移时候加以限制。
-
当j的值足够大时,该根节点的j层儿子之间一定不会发生矛盾,因此可以由dp[son[i]][j-1]向dp[i][j]转移
-
当j的值比较小时,同层的子节点会发生冲突,那么就必须手动解决冲突,即将其中一个点设为k-j,以保证两个子节点之间的距离大于k
再考虑dp方程本身的含义,显然可知对于dp[i][j],随着j变小可选择的范围应逐渐增多,即如果dp[i][3] = 4,dp[i][1]最少为4,由此,再转移后再加入dp[i][j] = max(dp[i][j], dp[i][j+1])
#include <cstdio>
#include <algorithm>
#include <cstring>
using std :: max;
const int maxn = 20000 + 100;
int last[maxn], pre[maxn], other[maxn];
int f[maxn][120];
int n, k;
int a[maxn];
int tot = 0;
int x1, x2;
void add(int x, int y) {
tot++;
pre[tot] = last[x];
last[x] = tot;
other[tot] = y;
}
void dfs(int x, int from) {
f[x][0] = a[x];
for (int p = last[x]; p; p = pre[p]) {
int q = other[p];
if (q == from) continue;
dfs(q, x);
f[x][0] = f[x][0] + f[q][k];
for (int j = 1; j <= k; j++) {
f[x][j] = max(f[x][j] + f[q][max(k - j, j - 1)], f[x][max(k - j + 1, j)] + f[q][j-1]);
}
}
for (int i = k-1; i >= 0; i--) f[x][i] = max(f[x][i+1], f[x][i]);
}
int main () {
freopen("score.in", "r", stdin);
freopen("score.out", "w", stdout);
scanf("%d %d", &n, &k);
for (int i = 1; i <= n; i++) scanf("%d", &a[i]);
for (int i = 1; i < n; i++) {
scanf("%d %d", &x1, &x2);
add(x1, x2);
add(x2, x1);
}
dfs(1, 0);
printf("%d", f[1][0]);
return 0;
}
再贴上apt大犇的AC代码,代码略长但更为直观
var
n,m,a,b,bg :longint;
f :array[0..10010,0..105]of longint;
pre,oth,last,q,w :array[0..20010]of longint;
vis :array[0..10010]of boolean;
ii,i,j,k,p,r :longint;
totl,ans,ret,mxs :longint;
function max(a,b:longint):longint;
begin
if a>b then exit(a); exit(b);
end;
procedure conn(a,b:longint);
begin
inc(totl);
pre[totl]:=last[a];
last[a]:=totl;
oth[totl]:=b;
end;
procedure bfs;
var p,cur,r,he,ta:longint;
begin
he:=0; ta:=1; q[1]:=1; vis[1]:=true;
while he<>ta do begin
inc(he);
cur:=q[he];
p:=last[cur];
while p>0 do begin
r:=oth[p];
if not vis[r] then begin
vis[r]:=true;
inc(ta);
q[ta]:=r;
end;
p:=pre[p];
end;
end;
end;
begin
assign(input,'score.in'); reset(input);
assign(output,'score.out'); rewrite(output);
read(n,m);
for i:=1 to n do read(w[i]);
for i:=1 to n-1 do begin
read(a,b);
conn(a,b); conn(b,a);
end;
bfs;
bg:=(m>>1)+1;
for ii:=n downto 1 do begin
i:=q[ii];
f[i,0]:=w[i];
p:=last[i];
while p>0 do begin
r:=oth[p];
inc(f[i,0],f[r,m]);
p:=pre[p];
end;
for k:=m downto bg do begin
f[i,k]:=f[i,k+1];
ret:=0;
p:=last[i];
while p>0 do begin
r:=oth[p];
inc(ret,f[r,k-1]);
p:=pre[p];
end;
f[i,k]:=max(f[i,k],ret);
//if (k=3)and(i=1) then writeln('??',ret,' ',f[3,2],' ',f[i,k]);
end;
for k:=bg-1 downto 1 do begin
f[i,k]:=f[i,k+1];
ret:=0; mxs:=0;
p:=last[i];
while p>0 do begin
r:=oth[p];
inc(ret,f[r,m-k]);
p:=pre[p];
end;
p:=last[i];
while p>0 do begin
r:=oth[p];
f[i,k]:=max(f[i,k],ret-f[r,m-k]+f[r,k-1]);
p:=pre[p];
end;
{if (k=2)and(i=1) then writeln('??',ret,' ',mxs,' ',f[2,1]);
f[i,k]:=max(f[i,k],f[mxs,k-1]+ret-f[mxs,m-k]); }
end;
f[i,0]:=max(f[i,0],f[i,1]);
end;
{for i:=1 to n do begin
for j:=0 to m do begin
write(f[i,j],' ');
end;
writeln;
end; }
for i:=0 to m do
ans:=max(ans,f[1,i]);
write(ans);
close(input);
close(output);
end.
T2:
线性dp,状态定义和转移都比较邪,,,
考试时把题目理解成处理玉的方案数,导致前期思路错误,未能完成题目
正解:
F[i]表示到了第i天恰好第一次出现k个连续的晴天的方案数,那么要保证i-k这一天一定是雨天或者X,于是i-k+1i这一段的天气已经全部被固定了,可以得出方案数有2^(1i-k中X的个数),然后减去所有不合法的状态,对于Fj就减去F[j]2^(j+1~i-k中X的个数)(可以记一个数组t1,每次遇到X就2,每次都加上F[i]的值),(j>i-k)的就是减去F[j],对于雨天反过来做一次,最后答案是sigma(F[i]*雨天的t1[i+1])
实现:
使用numx, numw, numb记录每种天气出现的次数,为方便期间,numx, numb 从1开始,numw从n逆向开始
转移
当题设条件满足时,f[i] = 2 ^ (numx[i-k-1]) - t[i - k - 1], ts[i] = (ts[i-1]) * (1 + (当前为x) ) + f[i]。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
const int mod = 1000000007;
const int maxn = 1000000 + 100;
int n, k;
char s[maxn];
long long pow2[maxn];
int numb[maxn], numw[maxn], numx[maxn];
long long fs[maxn], fr[maxn], ts[maxn], tr[maxn];
int main () {
freopen("jade.in", "r", stdin);
freopen("jade.out", "w", stdout);
scanf("%d %d", &n, &k);
scanf("%s", s + 1);
s[0] = 'X';
s[n+1] = 'X';
pow2[0] = 1;
for (int i = 1; i <= n; i++) pow2[i] = (pow2[i-1] * 2) % mod;
for (int i = 1; i <= n; i++) numb[i] = numb[i-1] + (s[i] == 'B');
for (int i = n; i >= 1; i--) numw[i] = numw[i+1] + (s[i] == 'W');
for (int i = 1; i <= n; i++) numx[i] = numx[i-1] + (s[i] == 'X');
for (int i = k; i <= n; i++) {
if ((numb[i] - numb[i-k] + numx[i] - numx[i-k]) == k && s[i-k] != 'B')
fs[i] = ((pow2[numx[i - k - 1]] - ts[i - k - 1]) + mod) % mod;
ts[i] = (ts[i-1] * (1 + (s[i] == 'X')) + fs[i]) % mod;
}
numx[n+1] = numx[n];
for (int i = n - k + 1; i >= 1; i--) {
if (numw[i] - numw[i + k] + numx[i + k - 1] - numx[i - 1] == k && s[i + k] != 'W')
fr[i] = ((pow2[numx[n] - numx[i + k]] - tr[i + k + 1]) + mod) % mod;
tr[i] = ( tr[i + 1] * (1 + (s[i] == 'X')) + fr[i] ) % mod;
}
long long ans = 0;
//for (int i = 1; i <= n; i++) printf("%I64d ", ts[i]);
for (int i = 1; i <= n; i++) ans = ((ans + fs[i] * tr[i + 1] % mod) + mod) % mod;
printf("%I64d", ans);
return 0;
}
具体细节有待进一步讨论
具体细节有待进一步讨论
具体细节有待进一步讨论
具体细节有待进一步讨论
T3:
正在写。。。