zoukankan      html  css  js  c++  java
  • POJ1797 Heavy Transportation —— 最短路变形

    题目链接:http://poj.org/problem?id=1797

    Heavy Transportation
    Time Limit: 3000MS   Memory Limit: 30000K
    Total Submissions: 39999   Accepted: 10515

    Description

    Background 
    Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight. 
    Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know. 

    Problem 
    You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.

    Input

    The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

    Output

    The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

    Sample Input

    1
    3 3
    1 2 3
    1 3 4
    2 3 5
    

    Sample Output

    Scenario #1:
    4
    

    Source

    TUD Programming Contest 2004, Darmstadt, Germany
     
     
     
    题解:
    1.最短路径的变形:把dis[]从原来的记录最短距离 变为 记录不同路径上最小边权中的最大值。
    2.利用dijkstra算法时,每次松弛都是选取dis的最大值。
     
     
    代码如下:
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include <vector>
     6 #include <cmath>
     7 #include <queue>
     8 #include <stack>
     9 #include <map>
    10 #include <string>
    11 #include <set>
    12 #define rep(i,a,n) for(int (i) = a; (i)<=(n); (i)++)
    13 #define ms(a,b) memset((a),(b),sizeof((a)))
    14 using namespace std;
    15 typedef long long LL;
    16 const double EPS = 1e-8;
    17 const int INF = 2e9;
    18 const LL LNF = 9e18;
    19 const int MOD = 1e9+7;
    20 const int MAXN = 1e3+10;
    21 
    22 int n, m;
    23 
    24 struct edge
    25 {
    26     int to, w, next;
    27 }edge[MAXN*MAXN];
    28 int cnt, head[MAXN];
    29 
    30 void addedge(int u, int v, int w)
    31 {
    32     edge[cnt].to = v;
    33     edge[cnt].w = w;
    34     edge[cnt].next = head[u];
    35     head[u] = cnt++;
    36 }
    37 
    38 void init()
    39 {
    40     cnt = 0;
    41     memset(head, -1, sizeof(head));
    42 }
    43 
    44 int dis[MAXN];
    45 bool vis[MAXN];
    46 void dijkstra(int st)
    47 {
    48     memset(vis, 0, sizeof(vis));
    49     for(int i = 1; i<=n; i++)
    50         dis[i] = (i==st?INF:0);
    51 
    52     for(int i = 1; i<=n; i++)
    53     {
    54         int k, maxx = 0;
    55         for(int j = 1; j<=n; j++)
    56             if(!vis[j] && dis[j]>maxx)
    57                 maxx = dis[k=j];
    58 
    59         vis[k] = 1;
    60         for(int j = head[k]; j!=-1; j = edge[j].next)
    61             if(!vis[edge[j].to])
    62                 dis[edge[j].to] = max(dis[edge[j].to], min(dis[k], edge[j].w) );
    63     }
    64 }
    65 
    66 int x[MAXN], y[MAXN];
    67 int main()
    68 {
    69     int T;
    70     scanf("%d", &T);
    71     for(int kase = 1; kase<=T; kase++)
    72     {
    73         scanf("%d%d", &n, &m);
    74         init();
    75         for(int i = 1; i<=m; i++)
    76         {
    77             int u, v, w;
    78             scanf("%d%d%d", &u, &v, &w);
    79             addedge(u,v,w);
    80             addedge(v,u,w);
    81         }
    82 
    83         dijkstra(1);
    84         printf("Scenario #%d:
    ",kase);
    85         printf("%d
    
    ", dis[n]);
    86     }
    87 }
    View Code
     
  • 相关阅读:
    C++并发与多线程学习笔记--unique_lock详解
    C++并发与多线程学习笔记--互斥量、用法、死锁概念
    MongoDB教程--配置与入门
    C++并发与多线程学习笔记--多线程数据共享问题
    C++并发与多线程学习笔记--参数传递详解
    C++并发与多线程学习笔记--基本概念和实现
    Python学习笔记--语音处理初步
    C#中三个关键字params,Ref,out
    Windows窗体应用开发3--配置标准控件1
    在博客的第一天
  • 原文地址:https://www.cnblogs.com/DOLFAMINGO/p/7595672.html
Copyright © 2011-2022 走看看