zoukankan      html  css  js  c++  java
  • POJ1797 Heavy Transportation —— 最短路变形

    题目链接:http://poj.org/problem?id=1797

    Heavy Transportation
    Time Limit: 3000MS   Memory Limit: 30000K
    Total Submissions: 39999   Accepted: 10515

    Description

    Background 
    Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight. 
    Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know. 

    Problem 
    You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.

    Input

    The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

    Output

    The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

    Sample Input

    1
    3 3
    1 2 3
    1 3 4
    2 3 5
    

    Sample Output

    Scenario #1:
    4
    

    Source

    TUD Programming Contest 2004, Darmstadt, Germany
     
     
     
    题解:
    1.最短路径的变形:把dis[]从原来的记录最短距离 变为 记录不同路径上最小边权中的最大值。
    2.利用dijkstra算法时,每次松弛都是选取dis的最大值。
     
     
    代码如下:
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 #include <vector>
     6 #include <cmath>
     7 #include <queue>
     8 #include <stack>
     9 #include <map>
    10 #include <string>
    11 #include <set>
    12 #define rep(i,a,n) for(int (i) = a; (i)<=(n); (i)++)
    13 #define ms(a,b) memset((a),(b),sizeof((a)))
    14 using namespace std;
    15 typedef long long LL;
    16 const double EPS = 1e-8;
    17 const int INF = 2e9;
    18 const LL LNF = 9e18;
    19 const int MOD = 1e9+7;
    20 const int MAXN = 1e3+10;
    21 
    22 int n, m;
    23 
    24 struct edge
    25 {
    26     int to, w, next;
    27 }edge[MAXN*MAXN];
    28 int cnt, head[MAXN];
    29 
    30 void addedge(int u, int v, int w)
    31 {
    32     edge[cnt].to = v;
    33     edge[cnt].w = w;
    34     edge[cnt].next = head[u];
    35     head[u] = cnt++;
    36 }
    37 
    38 void init()
    39 {
    40     cnt = 0;
    41     memset(head, -1, sizeof(head));
    42 }
    43 
    44 int dis[MAXN];
    45 bool vis[MAXN];
    46 void dijkstra(int st)
    47 {
    48     memset(vis, 0, sizeof(vis));
    49     for(int i = 1; i<=n; i++)
    50         dis[i] = (i==st?INF:0);
    51 
    52     for(int i = 1; i<=n; i++)
    53     {
    54         int k, maxx = 0;
    55         for(int j = 1; j<=n; j++)
    56             if(!vis[j] && dis[j]>maxx)
    57                 maxx = dis[k=j];
    58 
    59         vis[k] = 1;
    60         for(int j = head[k]; j!=-1; j = edge[j].next)
    61             if(!vis[edge[j].to])
    62                 dis[edge[j].to] = max(dis[edge[j].to], min(dis[k], edge[j].w) );
    63     }
    64 }
    65 
    66 int x[MAXN], y[MAXN];
    67 int main()
    68 {
    69     int T;
    70     scanf("%d", &T);
    71     for(int kase = 1; kase<=T; kase++)
    72     {
    73         scanf("%d%d", &n, &m);
    74         init();
    75         for(int i = 1; i<=m; i++)
    76         {
    77             int u, v, w;
    78             scanf("%d%d%d", &u, &v, &w);
    79             addedge(u,v,w);
    80             addedge(v,u,w);
    81         }
    82 
    83         dijkstra(1);
    84         printf("Scenario #%d:
    ",kase);
    85         printf("%d
    
    ", dis[n]);
    86     }
    87 }
    View Code
     
  • 相关阅读:
    斯坦福大学Andrew Ng教授主讲的《机器学习》公开课观后感
    关于内推,你该知道的点点滴滴
    向大学说拜拜——大学 > 兴趣 + 时间 + 思考 + 实践
    源码浅析:InnoDB聚集索引如何定位到数据的物理位置,并从磁盘读取
    5.7.17版本mysqlbinlog实时拉取的二进制日志不完整的原因分析
    InnoDB的ibd数据文件为什么比data_length+index_length+data_free的总和还要大?
    gh-ost工具在线改表过程的详细解析
    MySQL5.7 使用utf8mb4字符集比latin1字符集性能低25%,你敢信?
    通过slow query log可以查出长时间未提交的事务吗?用实验+源码来揭晓答案
    源码浅析:MySQL一条insert操作,会写哪些文件?包括UNDO相关的文件吗?
  • 原文地址:https://www.cnblogs.com/DOLFAMINGO/p/7595672.html
Copyright © 2011-2022 走看看