zoukankan      html  css  js  c++  java
  • CSUST 集训队选拔赛题解

    选拔赛的题解,~~~

    题目链接:请点击

    A题

    素数筛 + 线段树(树状数组)

    先用素数筛打表,然后线段树更新,遍历求出值,O(1)查询即可

    AC代码:

    /*num数组 是把记录 数是否存在 存在即为1。
    总共有N个数,如何判断第i+1个数到最后一个
    数之间有多少个数小于第i个数呢?不妨假设
    有一个区间 [1,N],只需要判断区间[i+1,N]之
    间有多少个数小于第i个数。如果我们把总区间初
    始化为0,然后把第i个数之前出现过的数都在相应
    的区间把它的值定为1,那么问题就转换成了[i+1,N]
    值的总和
    */
    #include <stdio.h>
    #include <bits/stdc++.h>
    #define lson l, m, rt<<1
    #define rson m+1, r, rt<<1|1
    #define size 1000000 + 7
    #define min(a, b) a > b ? b : a
    typedef long long LL;
    #define MAXN 1000005
    #define MAXL 1299710
    LL prime[MAXN];
    LL check[MAXL];
    LL PP[MAXL];
    void init(){
    
    LL tot = 0;
    memset(check, 0, sizeof(check));
    for (LL i = 2; i < MAXL; ++i)
    {
      if (!check[i])
      {
        prime[tot++] = i;
      }
      for (LL j = 0; j < tot; ++j)
      {
        if (i * prime[j] > MAXL)
        {
          break;
        }
        check[i*prime[j]] = prime[j];
        if (i % prime[j] == 0)
        {
          break;
        }
      }
    }
    }
    
    LL num[size << 2], x[size];
    void pushup(LL rt)
    {
        num[rt] = num[rt << 1] + num[rt << 1 | 1];
    }
    void build( LL l, LL r, LL rt)
    {
        num[rt] = 0;
        if( l == r) return;
        LL m = (l + r) >> 1;
        build(lson);
        build(rson);
    }
     
    LL qurey( LL L, LL R, LL l, LL r, LL rt)
    {
        if( L <= l && r <= R)
            return num[rt];
        LL m = (l + r) >> 1;
        LL ans = 0;
        if(L <= m) ans+=qurey(L, R, lson);
        if(R > m) ans+=qurey(L, R, rson);
        return ans;
    }
    void updata( LL p, LL l, LL r, LL rt)
    {
        if( l == r)
        {
            num[rt]++;return;
        }
        LL m = ( l + r) >> 1;
        if( p <= m) updata(p, lson);
        else updata(p, rson);
        pushup(rt);
    }
    LL a[MAXN + 7];
    int main()
    {
        LL n;
            init();
        check[1] = 1;
        for(LL i = 2 ; i <= MAXN; i++ ){
            if(!check[i]) check[i] = i;
        }
    
            LL sum = 0;
            build(1, MAXN , 1);
            for( LL i= 1; i <= MAXN; i++)
            {
                LL sum = 0;
                //scanf("%lld", &x[i]);
               sum =  qurey(1, check[i], 1, MAXN , 1);
               
               a[i] = sum;
                updata(check[i], 1, MAXN, 1);
     
            }
            LL t;
            scanf("%lld",&t);
            while(t--){
            LL x;
            scanf("%lld",&x);
            printf("%lld
    ",a[x]);
    }
        return 0;
    }
    View Code

    B题

    并查集 

    没有蘑菇的建树,求出有多少个没有蘑菇的路,然后求出有蘑菇的路就行

    AC代码:

    /**
    /*@author Victor
    /*language C++
    */
    //#include <bits/stdc++.h>
    #include<iostream>
    #include<algorithm>
    #include<cstdlib>
    #include<cstring>
    #include<cstdio>
    #include<string>
    #include<vector>
    #include<bitset>
    #include<queue>
    #include<deque>
    #include<stack>
    #include<cmath>
    #include<list>
    //#include<map>
    #include<set>
    //#define DEBUG
    #define RI register ll
    using namespace std;
    typedef long long ll;
    //typedef __ll128 lll;
    const ll N=100000+10;
    const ll MOD=1e9+7;
    const double PI = acos(-1.0);
    const double EXP = 1E-8;
    const ll INF = 0x3f3f3f3f;
    #define pii pair<ll,ll>
    #define pll pair<ll,ll>
    #define pil pair<ll , ll>
    #define pli pair<ll,ll>
    #define pdl pair<double,ll>
    #define pld pair<ll,double>
    #define pdd pair<double,double>
    #define iput(n) scanf("%lld",&n);
    #define iiput(a,n) scanf("%lld%lld",&a,&n);
    #define iiiput(a,b,c) scanf("%lld%lld%lld",&a,&b,&c);
    #define dput(n) scanf("%lf",&n);
    #define llput(n) scanf("%lld",&n);
    #define cput(n) scanf("%s",n);
    #define puti(n) prllf("%lld
    ",n);
    #define putll(n) prllf("%lld
    ",n);
    #define putd(n) prllf("%lfd
    ",n);
    #define _cls(n) memset(n,0,sizeof(n));
    #define __cls(n) memset(n,INF,sizeof(n));
    //priority_queue <ll,vector<ll>,greater<ll> > Q;//优先队列递增
    //priority_queue<ll>Q;//递减
    //map<ll,ll>mp;
    //set<ll>st;
    //stack<>st;
    //queue<>Q;
    /***********************************************/
    //加速输入挂
    # define IOS ios::sync_with_stdio(false)
    # define FOR(i,a,n) for(ll i=a; i<=n; ++i)
    //求二进制中1的个数
    //__builtin_popcount(n);
    //求2^k
    //#define (ll)Pow(2,k) (1LL<<k)
    #define to_1(n) __builtin_popcount(n)
    //树状数组
    #define lowbit(x) (x&-x)  
    ll fa[333333];
    ll pre[333333];
    void init(ll n){
         for(ll i = 1;i <= n;i++) 
         fa[i] = i;
    }
    
    ll find(ll x) {
        if(fa[x] == x) 
        
        return x;
        
        return fa[x] = find(fa[x]);
    }
    
    void merge(ll x,ll y) {
        ll xi = find(x);
        ll yi = find(y);
        if(xi == yi) 
        return;
        else 
        fa[xi] = yi;
        return ;
    }
    
    
    int main(){
        ll n;
        IOS;
        cin >> n;
        init(n);
        for(ll i = 1 ; i < n ; i++){
            ll u,v,w;
            cin >> u >> v >> w;
            if(w == 1) continue;
            merge(u,v);
        }
        for(ll i = 1; i <= n;i++){
            ++pre[find(i)];
        }
        
        ll sum = 0;
        for(ll i = 1; i <= n;i++){
            if(pre[i]) 
             sum += pre[i]  * (n - pre[i]);
        }
        cout << sum << endl;
        return 0;
    }
    View Code

    C题

    N次最短路

    AC代码:

    /**
    /*@author Victor
    /*language C++
    */
    #include <cmath>
    #include <cstring>
    #include <cstdio>
    #include <vector>
    #include <string>
    #include <algorithm>
    #include <string>
    #include <map>
    #include <queue>
    #include <set>
    #include <stack>
    using namespace std;
    #define MAXN 200010
    #define LEN 200010
    #define INF 1e9+7
    #define MODE 1000000
    #define pi acos(-1)
    #define g 9.8
    typedef long long ll;
    #define lson l,m,rt<<1
    #define rson m+1,r,rt<<1|1
    struct edge{
        ll next,to,w;
    };
     
    edge G[MAXN*2];
    ll root;
    ll num=0;
    ll cnt=0;
    ll head[MAXN<<1];
    ll depth[MAXN<<1];//深度
    ll first[MAXN<<1];//首次出现编号
    ll dir[MAXN<<1];//距离
    ll que[MAXN<<1];//队列
    ll par[MAXN];//并查集父节点
    bool vis[MAXN];
    ll dp[MAXN][20];
    void init(ll n){for(ll i=0;i<=n;i++)par[i]=i;}//初始化并查集
    ll _find(ll x){if(par[x]==x)return x;else return par[x]=_find(par[x]);}//查询并查集祖先
    void unite(ll x,ll y){x=_find(x),y=_find(y);if(x==y)return;else par[x]=y;}//合并节点
    void add(ll u,ll v,ll w){G[num].w=w;G[num].to=v;G[num].next=head[u];head[u]=num++;}//前向星建图
    void dfs(ll u,ll dep)//dfs建图
    {
        vis[u]=true;
        que[++cnt]=u;first[u]=cnt;depth[cnt]=dep;
        for(ll k=head[u];k!=-1;k=G[k].next)
        {
            ll v=G[k].to,w=G[k].w;
            if(!vis[v]){
            dir[v]=dir[u]+w;
            dfs(v,dep+1);
            que[++cnt]=u;depth[cnt]=dep;
            }
        }
    }
    //ST表求LCA
    void ST(ll n)
    {
        for(ll i=1;i<=n;i++)
            dp[i][0] = i;
        for(ll j=1;(1<<j)<=n;j++)
        {
            for(ll i=1;i+(1<<j)-1<=n;i++)
            {
                ll a = dp[i][j-1] , b = dp[i+(1<<(j-1))][j-1];
                dp[i][j] = depth[a]<depth[b]?a:b;
            }
        }
    }
    //两个节点之间的路径深度最小的就是LCA
    ll RMQ(ll l,ll r)
    {
        ll k=0;
        while((1<<(k+1))<=r-l+1)
            k++;
        ll a = dp[l][k], b = dp[r-(1<<k)+1][k]; //保存的是编号
        return depth[a]<depth[b]?a:b;
    }
    ll LCA(ll u ,ll v)
    {
        ll x = first[u] , y = first[v];
        if(x > y) swap(x,y);
        ll res = RMQ(x,y);
        return que[res];
    }
    ll n,m,c;
    int main()
    {
        scanf("%lld",&n);
            m = n - 1;
        num=0,cnt=0;
        memset(head,-1,sizeof(head));
        memset(vis,0,sizeof(vis));
        init(n);
        for(ll i=0;i<m;i++)
        {
            ll u,v,w;
            scanf("%lld%lld%lld",&u,&v,&w);
            add(u,v,w);
            add(v,u,w);
            unite(u,v);
        }
        ll u1,v1,w1;
        scanf("%lld%lld%lld",&u1,&v1,&w1);
        for(ll i=1;i<=n;i++)
        {
            if(_find(i)==i){
                dir[i]=0;
                dfs(i,1);
            }
        }
        ST(2*n-1);
        scanf("%lld",&c);
        while(c--)
        {
            ll u,v;
            scanf("%lld%lld",&u,&v);
          
                ll lca=LCA(u,v);
                ll mid1 = dir[u]+dir[v]-2*dir[lca];
                ll lca1=LCA(u,u1); 
                ll lca2 = LCA(v1,v);
                ll mid2 = dir[u]+dir[u1]-2*dir[lca1] + dir[v]+dir[v1]-2*dir[lca2] + w1;
                 ll lca3=LCA(u,v1); ll lca4 = LCA(u1,v);
                ll mid3 = dir[u]+dir[v1]-2*dir[lca3] + dir[v]+dir[u1]-2*dir[lca4] + w1;
               ll mine;
               if(mid1 > mid2){
                   mine = mid2;
               }
               else mine = mid1;
               
                if(mine > mid3){
                   mine = mid3;
               }
               //else mine = mid;
               
               
                printf("%lld
    ",mine);
            
           
        }
        return 0;
    }
    View Code

    D题

     gcd求最简分数

    AC代码:

    //                .*/@@@]]``...                                                                   
    //               .,@@  ,[[@@@@]`..   .**.*]]]]/@@@@@@@]]]]*.**.                                 
    //               *@@ ,OOOO]`  .[@@@]]@@@@@@[[[[`*     *,[[[@@@@@@]]`..    .*....*****.....       
    //              .=@^ OOOOOOOOO  @@@[`                           .[@@@]/@@@@@@@@@@@@@@@@@\`.    
    //              .=@^,OOOOOOOOO[`                                       [@@      *]]]]]].  =@^.    
    //              .@@*=OOOOOO/[`                                              OOOOOOOOOOO^ =@^.    
    //              .@@ /OOOOO/*                                                   ,,OOOOOOO^ @@*     
    //              .@@.OOOO/.                                                      ,OOOOOOO^=@^.     
    //              .=@^OO`                                                          =O/OOO @@`.     
    //              .=@^                                                               ,OOO*,@/.      
    //               *@@`                                                                [. @@*.      
    //               *@@.                                                                 @@@^.       
    //              .=@^                                                                  =@^.        
    //              *@@                ,].                                                .@@*        
    //             .=@^               =/                               [@               .@^.       
    //             ./@`                                                                   */@.       
    //             *@@                                                                    *^@@*       
    //             *@@                    ]]`                      ,]].                   *^@@.       
    //            .,@/                  @@@@@@^                  =@@@@@@                  ,^@@.       
    //            .@@                  =@@@@@@@                  @@@@@@@^                 =^@@.       
    //           .=@^                   @@@@@@^                  =@@@@@@                 *o^@@*       
    //           .=@^           ,ooooo^   [[`        [[[[[`        ,[[.  ./oooo^         /o=@/.       
    //           .=@^           ,ooooo^                                  *oooooo.       =o/@@`.       
    //            *@@                                                       **         =oo=@/.        
    //            .,@                                                                /oo@@.         
    //             .,@@                                                             ,oo//@/.          
    //              .*@                                                         ,oo/@@`.           
    //                .,@@]                        ]]]]]                     .]oo[]@@@`.             
    //                  ..,@@@@]]]*             *@@@OOO@@@@.           .,]]]@@@@@/`*.               
    //                      .*.*[[[@@@@@/        @@O@@@OO@@@O@@`          @@@[*...                   
    //                             ./@^         =@OOOO@@@@OOOO@@^         *o@^.                      
    //                            .=@/    ,@@@@@@@@@@@@O@O@@OOO@@^,]@@^    =^@@`.                     
    //                            *@@            ,@@OO@@@@@O@OOO@@@[.      *o/@@.                     
    //                           .=@^            /@@O@@@O@@@OOO@@       ].  o@^.                    
    //                           .@@      ,]]@@@@@@OO@@@@O@@OOO@@]]]/@@/   =o/@@*                    
    //                          .,@/      ,[[*    @@OOO@OOOOOOO@@[[[`      *o@@^.                   
    //                          .=@^                @@OOOOOOOOO@@@\`        oo=@.                   
    //                          .@@.                  .[@@@@@OOOOOO@@`       =o^@@*                   
    //                          *@@                       *@@OO@@@@@@        =o^@@.                   
    //                          *@@                        ,@@@[ *`          =o^@@^.                  
    //                          .*.................................................                   
    //                                
    /**
    /*@author Victor
    /*language C++
    */
    //#include <bits/stdc++.h>
    #include<iostream>
    #include<algorithm>
    #include<cstdlib>
    #include<cstring>
    #include<cstdio>
    #include<string>
    #include<vector>
    #include<bitset>
    #include<queue>
    #include<deque>
    #include<stack>
    #include<cmath>
    #include<list>
    //#include<map>
    #include<set>
    //#define DEBUG
    #define RI register int
    using namespace std;
    typedef long long ll;
    //typedef __int128 lll;
    const int N=100000+10;
    const int MOD=1e9+7;
    const double PI = acos(-1.0);
    const double EXP = 1E-8;
    const int INF = 0x3f3f3f3f;
    #define pii pair<int,int>
    #define pll pair<ll,ll>
    #define pil pair<int , ll>
    #define pli pair<ll,int>
    #define pdl pair<double,ll>
    #define pld pair<ll,double>
    #define pdd pair<double,double>
    #define iput(n) scanf("%d",&n);
    #define iiput(a,n) scanf("%d%d",&a,&n);
    #define iiiput(a,b,c) scanf("%d%d%d",&a,&b,&c);
    #define dput(n) scanf("%lf",&n);
    #define llput(n) scanf("%lld",&n);
    #define cput(n) scanf("%s",n);
    #define puti(n) printf("%d
    ",n);
    #define putll(n) printf("%lld
    ",n);
    #define putd(n) printf("%lfd
    ",n);
    #define _cls(n) memset(n,0,sizeof(n));
    #define __cls(n) memset(n,INF,sizeof(n));
    //priority_queue <int,vector<int>,greater<int> > Q;//优先队列递增
    //priority_queue<int>Q;//递减
    //map<ll,ll>mp;
    //set<ll>st;
    //stack<>st;
    //queue<>Q;
    /***********************************************/
    //加速输入挂
    # define IOS ios::sync_with_stdio(false)
    # define FOR(i,a,n) for(int i=a; i<=n; ++i)
    //求二进制中1的个数
    //__builtin_popcount(n);
    //求2^k
    //#define (ll)Pow(2,k) (1LL<<k)
    #define to_1(n) __builtin_popcount(n)
    //树状数组
    #define lowbit(x) (x&-x)  
    ll gcd(ll a,ll b){
        return b?gcd(b,a%b):a;
    }
    ll qpow(ll p,ll q){ll f=1;while(q){if(q&1)f=f*p;p=p*p;q>>=1;}return f;}
    ll exgcd(ll l,ll r,ll &x,ll &y){if(r==0){x=1;y=0;return l;}else{ll d=exgcd(r,l%r,y,x);y-=l/r*x;return d;}}
    //求a关于m的乘法逆元
    ll mod_inverse(ll a,ll m){ll x,y;if(exgcd(a,m,x,y)==1)/*ax+my=1*/return (x%m+m)%m;return -1;/*不存在*/}
    //快速乘
    ll qmul(ll a,ll b,ll m){ll ans=0;ll k=a;ll f=1;/*f是用来存负号的*/if(k<0){f=-1;k=-k;}if(b<0){f*=-1;b=-b;}while(b){if(b&1)ans=(ans+k)%m;k=(k+k)%m;b>>=1;}return ans*f;}
    //中国剩余定理CRT (x=ai mod mi)
    ll china(ll n, ll *a,ll *m) {ll M=1,y,x=0,d;for(ll i = 1; i <= n; i++) M *= m[i];for(ll i = 1; i <= n; i++) {ll w = M /m[i]; exgcd(m[i], w, d, y);/*m[i]*d+w*y=1*/ x = (x + y*w*a[i]) % M;}return (x+M)%M;}
    //筛素数,全局:int cnt,prime[N],p[N];
    //void isprime(){cnt = 0;memset(prime,true,sizeof(prime));for(int i=2; i<N; i++){if(prime[i]){p[cnt++] = i;for(int j=i+i; j<N; j+=i)prime[j] = false;}}}
    //快速求逆元
    //void inverse(){inv[1] = 1;for(int i=2;i<N;i++){if(i >= M) break;inv[i] = (M-M/i)*inv[M%i]%M;}}
    //组合数取模,n和m 10^5时,预处理出逆元和阶乘
    /*
    ll fac[N]={1,1},inv[N]={1,1},f[N]={1,1};
    ll C(ll a,ll b){
        if(b>a)return 0;
        return fac[a]*inv[b]%M*inv[a-b]%M;
    }
    void init(){//快速计算阶乘的逆元
        for(int i=2;i<N;i++){
            fac[i]=fac[i-1]*i%M;
            f[i]=(M-M/i)*f[M%i]%M;
            inv[i]=inv[i-1]*f[i]%M;
        }
    }
    */
    
    int main(){
        int t;
        cin >> t;
        while(t--){
     ll a,b,c,d;
     cin >> a >> b >> c >> d;
     ll sum =( b - a + 1) * (d - c + 1); 
    ll su;
    if(a > d || c > b) su = 0;
    else if(a > c) 
    {
        if(b > d) 
            su = d - a + 1;
        else su = b - a + 1;
    }
    else if( a <= c){
        if(b > d) 
            su = d - c + 1;
        else su = b - c + 1;
    
    }
    if(su == 0) printf("0/1
    ");
    else {
        if(sum % su == 0){
            printf("1/%lld
    ",sum / su);
        }
        else {
             printf("%lld/%lld
    ",su / gcd(su,sum) , sum / gcd(su,sum));
        }
    }
    }
    return 0;
    }
    View Code

    E题

     暴力最小遍历

    AC代码:

    /**
    /*@author Victor
    /*language C++
    */
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    ll a[1000],b[1000][1000];
    int main(){
    ll n,k;
    
    scanf("%lld%lld",&n,&k);
    ll min = 0;
    for(int j = 0 ; j < n ; j++){
        
        
    for(int i = 0 ; i < k ; i++ ){
        scanf("%lld",&a[i]);
    }
    sort(a,a+k);
    
    for(int z = 0 ; z < k; z++ )
    {
        b[j][z] = a[z];
    //    cout << a[z] << endl; 
    }
    
    
    }
    
    for(int i = 0 ; i < k ; i++){
        for(int j = 0 ; j < n - 1 ; j++){
            min += abs(b[j][i] - b[j + 1][i]);
        //    cout << min << endl; 
        }
    }
    
    printf("%lld
    ",min);
    return 0;
    }
    View Code

    F题

     枚举每点的最短路求和求最小值

    AC代码:

    /**
    /*@author Victor
    /*language C++
    */
    #include<iostream>
    #include<cstdio>
    #include<vector>
    #include<cmath>
    #include<algorithm>
    #include<map>
    #include<cstring>
    #include<string>
    #include<set>
    #include<queue>
    #include<fstream>
    using namespace std;
    typedef pair<int,int> PII;
    const int MAXN=1e4+5;
    const int INF=0x3f3f3f3f;
    bool vis[MAXN];
    int dist[MAXN],head[MAXN],tot;
    int pre[MAXN];
    
    struct Edge
    {
        int from,to,cost,nxt;
        Edge(){}
        Edge(int _from,int _to,int _cost):from(_from),to(_to),cost(_cost){}
    }e[MAXN*2];
    
    void addedge(int u,int v,int w)
    {
        e[tot].from=u;e[tot].to=v;e[tot].cost=w;
        e[tot].nxt=head[u];head[u]=tot++;
    }
    
    struct qnode
    {
        int c,v;
        qnode(int _c=0,int _v=0):c(_c),v(_v){}
        bool operator < (const qnode &rhs) const {return c>rhs.c;}
    };
    
    void Dijkstra(int n,int st)//点的编号从1开始
    {
        memset(vis,false,sizeof(vis));
        for(int i=0;i<=n;i++) dist[i]=INF;
        priority_queue<qnode> pq;
        while(!pq.empty()) pq.pop();
        dist[st]=0;
        pq.push(qnode(0,st));
        qnode frt;
        while(!pq.empty())
        {
            frt=pq.top(); pq.pop();
            int u=frt.v;
            if(vis[u]) continue;
            vis[u]=true;
            for(int i=head[u];i!=-1;i=e[i].nxt)
            {
                int to=e[i].to;
                int cost=e[i].cost;
                if(dist[to]>dist[u]+cost)
                {
                    dist[to]=dist[u]+cost;
                    pre[to]=u;
                    pq.push(qnode(dist[to],to));
                }
            }
        }
    }
    
    int main()
    {
        int n,m;
        while(scanf("%d%d",&n,&m)!=EOF)
        {
            if(n==0&&m==0) break;
            tot=0;memset(head,-1,sizeof(head));
            int u,v,w;
            for(int i=1;i<=m;i++)
            {
                scanf("%d%d%d",&u,&v,&w);
                addedge(u,v,w);addedge(v,u,w);
            }
            int st,ed;
            int sum = 0;
            int mine = INF;
        
            for(int st = 1; st <= n;st++){
            
            Dijkstra(n,st);
         for(int i = 1 ; i <= n;i++ ) {
    
             sum += dist[i];
         }  
            if(sum < mine){
                ed = st;
                mine = sum ;
            }
            sum = 0;
            
        }
    
    printf("%d %d
    ",mine , ed);
        }
        return 0;
    }
    View Code

    G题

     逆序对 + 线段树(归并排序

    AC代码:

    /**
    /*@author Victor
    /*language C++
    */
    #include <iostream>
    #include <cstdio>
    #include <bits/stdc++.h>
    #define _cls(a) memset(a,0,sizeof(a))
    typedef long long ll;
    using namespace std;
     
    ll n, a[200005], tmpA[200005], cnt = 0;
     ll p[200005];
     
    void merge_sort(ll l, ll r, ll *A) {
        if (l >= r) return ;
        ll mid = (l + r) >> 1;
        merge_sort(l, mid, A);
        merge_sort(mid + 1, r, A);
        ll pl = l, pr = mid + 1, tmpp = 0;
        while(pl <= mid && pr <= r) {
            if (A[pl] <= A[pr]) tmpA[tmpp++] = A[pl++];
            else tmpA[tmpp++] = A[pr++], cnt += mid - pl + 1;
        }
        while(pl <= mid) tmpA[tmpp++] = A[pl++];
        while(pr <= r) tmpA[tmpp++] = A[pr++];
        for (ll i = 0; i < tmpp; i++) A[i + l] = tmpA[i];
    } 
    
    int main() {
        ll t;
        scanf("%lld",&t);
        while(t--){
        _cls(p);
        _cls(a);
        _cls(tmpA);
        cnt = 0;
        scanf("%lld", &n);
            for (ll i = 1; i <= n; i++){
             ll x;
             scanf("%lld", &x);
             p[x] = i;
    }
        for (ll i = 1; i <= n; i++) {
        ll x;    
        scanf("%lld", &x);
        a[i] = p[x];
    }
        merge_sort(1, n, a);
        printf("%lld
    ", cnt);
    }
        return 0;
    }
    View Code

    H题

     二分 + 前缀和

    AC代码:

    /**
    /*@author Victor
    /*language C++
    */
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    
    struct name
    {
    ll w, v;    
    };
    struct name1
    {
    ll a, b;    
    };
    ll s[422222];
    ll o[422222];
    name p[400000 + 10];
    name1 p1[400000 + 10];
    
    int main(){
    
    ll n,m ,S;
    scanf("%lld%lld%lld",&n,&m,&S);
    for(ll i = 1 ; i <= n;i ++ )
    {
        ll w,v;
        scanf("%lld%lld",&p[i].w,&p[i].v);
    }
    ll l = 1, r = 10000000;
    ll W ;
    for(ll i = 1 ; i <= m; i++){
    
        scanf("%lld %lld",&p1[i].a,&p1[i].b);
    }
    ll sum = 2000000000000;
    for(ll k = 1 ; k <= 100; k++){
         W = (l + r) / 2;
         memset(s,0,sizeof(s));
         memset(o,0,sizeof(o));
         for(ll j = 1; j <= n; j++ ){
                 if(W <= p[j].w){
             s[j] = s[j - 1] + p[j].v;
             o[j] = 1 + o[j - 1];
         }
         else {
             s[j] = s[j - 1] ;
             o[j] = o[j - 1] ;
         }
         }
         
         ll mine = 0;
         ll H = 0;
        // ll sum = 2000000;
         for(ll i = 1;  i <= m ; i++ ){
             H += (s[p1[i].b] - s[p1[i].a - 1]) * (o[p1[i].b] - o[p1[i].a - 1]);
         }
         if(H < S) {
             r = W ;
         }
         else l = W;
         
          mine = abs(H - S);
         
         if(sum > mine) sum = mine;
    }
    printf("%lld
    ",sum);
    return 0;
    }
    View Code

    I题

     完全背包 + 快速幂

    AC代码:

    /**
    /*@author Victor
    /*language C++
    */
    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    ll t;
    ll dp[200000 + 7];
    ll qpow(ll a,ll b,ll m){
        ll ans=1;
        ll k=a;
        while(b){
            if(b&1)ans=ans*k%m;
            k=k*k%m;
            b>>=1;
        }
        return ans;
    }int main(){
    
    
    scanf("%lld",&t);
    while(t -- ){
        memset(dp,0,sizeof(dp));
        ll n, m;
        dp[1] = 1;
    //    dp[0] = 1;
        scanf("%lld%lld",&n,&m);
        if(m==1) dp[n] = qpow(2,n,100000000 + 7);
        else{
        
        for(int i = 0;i < m;i++){
            dp[i] = 1;
        }
    
        for(int i = m  ; i <= n;i++){
        
            dp[i] += dp[i - 1] + dp[i - m];
            dp[i] %= (100000000 + 7); 
        }
    }
    //    for(int i = 0 ;  i <= n ; i++ ){
    //        printf("%d
    ",dp[i]);
    //    }
        //printf("%d",dp[n]);
        printf("%lld
    ",dp[n] % (100000000 + 7));
    
    
    }
    return 0;
    }
    View Code

    J题

     线段树

    AC代码:

    /**
    /*@author Victor
    /*language C++
    */
    #include <stdio.h>
    #include <iostream>
    #include <algorithm>
    #include <math.h>
    #include <string.h>
    #include <vector>
    #define LL long long
    using namespace std;
    
    LL INF = 0x3f3f3f3f;
    const LL MAX = 1000000 + 50;
    
    LL Sum[MAX << 2];
    LL Add[MAX << 2];
    
    LL A[MAX];
    
    //PushUp函数更新节点信息 ,这里是求和
    void PushUp(LL rt){
        Sum[rt] = Sum[rt<<1] + Sum[rt<< 1|1];
        //prLLf("888sum[%ll] = %ll
    ", rt, Sum[rt]);
    }
    
    //PushDown下推标记
    void PushDown(LL rt,LL ln,LL rn){
        //ln,rn为左子树,右子树的数字数量。 
        if(Add[rt]){
            //下推标记 
            Add[rt<<1]+=Add[rt];
            Add[rt<<1|1]+=Add[rt];
            //修改子节点的Sum使之与对应的Add相对应 
            Sum[rt<<1]+=Add[rt]*ln;
            Sum[rt<<1|1]+=Add[rt]*rn;
            //清除本节点标记 
            Add[rt]=0;
        }
    }
    //Build函数建树 
    void Build(LL l,LL r,LL rt){ //l,r表示当前节点区间,rt表示当前节点编号
        //prLLf("l = %ll r = %ll
    ", l, r);
        if(l==r) {//若到达叶节点 
            Sum[rt] = A[l];//储存数组值
            //prLLf("A[%ll] = %lld
    ", l, A[l]);
            //prLLf("sum[%ll] = %ll
    ", rt, Sum[rt]);
            return;
        }
        LL m=(l+r)>>1;
        //左右递归 
        Build(l,m,rt<<1);
        Build(m+1,r,rt<<1|1);
        //更新信息 
        PushUp(rt);
        //prLLf("888sum[%ll] = %ll
    ", rt, Sum[rt]);
    }
    
    
    
    //点修改 A[L] + C
    void Update(LL L,LL C,LL l,LL r,LL rt){//l,r表示当前节点区间,rt表示当前节点编号
        if(l==r){//到叶节点,修改 
            Sum[rt] = C;
            //prLLf("sum[%ll] = %ll
    ", rt, Sum[rt]);
            return;
        }
        LL m=(l+r)>>1;
        PushDown(rt,m-l+1,r-m);//下推标记
        //根据条件判断往左子树调用还是往右 
        if(L <= m) Update(L,C,l,m,rt<<1);
        else       Update(L,C,m+1,r,rt<<1|1);
        PushUp(rt);//子节点更新了,所以本节点也需要更新信息 
    } 
    
    //区间修改
    void UpdateRange(LL L,LL R,LL C,LL l,LL r,LL rt){//L,R表示操作区间,l,r表示当前节点区间,rt表示当前节点编号 
        if(L <= l && r <= R){//如果本区间完全在操作区间[L,R]以内 
            Sum[rt]+=C*(r-l+1);//更新数字和,向上保持正确
            Add[rt]+=C;//增加Add标记,表示本区间的Sum正确,子区间的Sum仍需要根据Add的值来调整
            return ; 
        }
        LL m=(l+r)>>1;
        PushDown(rt,m-l+1,r-m);//下推标记
        //这里判断左右子树跟[L,R]有无交集,有交集才递归 
        if(L <= m) UpdateRange(L,R,C,l,m,rt<<1);
        if(R >  m) UpdateRange(L,R,C,m+1,r,rt<<1|1); 
        PushUp(rt);//更新本节点信息 
    } 
    
    
    //区间查询, 这里是求和
    LL QueryRange(LL L,LL R,LL l,LL r,LL rt){//L,R表示操作区间,l,r表示当前节点区间,rt表示当前节点编号
        if(L <= l && r <= R){
            //在区间内,直接返回 
            return Sum[rt];
        }
        LL m=(l+r)>>1;
        //下推标记,否则Sum可能不正确
        PushDown(rt,m-l+1,r-m); 
        
        //累计答案
        LL ANS= 0;
        if(L <= m) ANS += QueryRange(L,R,l,m,rt<<1);
        if(R > m) ANS += QueryRange(L,R,m+1,r,rt<<1|1);
        return ANS;
    }
    
    LL Query(LL l, LL r, LL rt, LL k){
        if(l == r){
            return l;
        }
    
        LL m = (l + r) >> 1;
    
        if(Sum[(rt << 1)] >= k){
            return Query(l, m, rt << 1, k);
        } else{
            return Query(m + 1, r, rt << 1 | 1, k - Sum[rt << 1]);
        }
    }
    
         
    //建树    Build(1,n,1); 
        
    //点修改   Update(L,C,1,n,1);
        
    //区间修改  UpdateRange(L,R,C,1,n,1);
        
    //区间查询  LL ANS=Query(L,R,1,n,1);
    
    int main(int argc, char const *argv[])
    {
        LL n, q;
        scanf("%lld%lld", &n, &q);
    
        for(LL i = 1; i <= n; i++){
            scanf("%lld", &A[i]);
        }
    
        Build(1, n, 1);
        while(q--){
            char op[3];
                  LL a , b , c;
                  scanf("%s",op);
                  if (op[1] == '1') {
                         scanf("%lld%lld%lld",&a,&b,&c);
                        UpdateRange(a,b,c,1,n,1);
                  } else if(op[1] == '2'){
                         scanf("%lld%lld%lld",&a,&b,&c);
                         UpdateRange(a , b , -c , 1 , n , 1);
                  }
                  else if(op[1] == '3'){
                    scanf("%lld%lld",&a,&c);
                    Update(a,c,1,n,1);
                  }
                  else if(op[1] == '4'){
                    scanf("%lld%lld",&a,&b);
                  printf("%lld
    ",QueryRange(a , b , 1 , n , 1));
    
            }
        }
        return 0;
    }
    View Code
  • 相关阅读:
    our毕业短片
    Android Memory Management, OutOfMemoryError
    android autoswitched ImageSwitcher
    Storage size of Bitmap
    Frequentlyused URI of Intent
    小知识: 软件版本号讲解: 什么是Alpha, Beta, RC
    JSF框架中使用的设计模式介绍
    Unicode编码表/00000FFF
    Spring事务的传播行为和隔离级别
    领略Spring 3.x 时代的Spring MVC
  • 原文地址:https://www.cnblogs.com/DWVictor/p/10485829.html
Copyright © 2011-2022 走看看