zoukankan      html  css  js  c++  java
  • 吴恩达深度学习笔记 course2 week1 测验

    1
    point

    1. 第 1 个问题

    If you have 10,000,000 examples, how would you split the train/dev/test set?

    98% train . 1% dev . 1% test      √

    33% train . 33% dev . 33% test

    60% train . 20% dev . 20% test

    第 2 个问题
    1
    point

    2. 第 2 个问题

    The dev and test set should:

    Come from the same distribution   √

    Come from different distributions

    Be identical to each other (same (x,y) pairs)

    Have the same number of examples

    第 3 个问题
    1
    point

    3. 第 3 个问题

    If your Neural Network model seems to have high bias, what of the following would be promising things to try? (Check all that apply.)

    Make the Neural Network deeper  

    Get more training data   √

    Add regularization     √

    Increase the number of units in each hidden layer

    Get more test data

    第 4 个问题
    1
    point

    4. 第 4 个问题

    You are working on an automated check-out kiosk for a supermarket, and are building a classifier for apples, bananas and oranges. Suppose your classifier obtains a training set error of 0.5%, and a dev set error of 7%. Which of the following are promising things to try to improve your classifier? (Check all that apply.)

    Increase the regularization parameter lambda   √

    Decrease the regularization parameter lambda

    Get more training data   √

    Use a bigger neural network

    第 5 个问题
    1
    point

    5. 第 5 个问题

    What is weight decay?

    A regularization technique (such as L2 regularization) that results in gradient descent shrinking the weights on every iteration.   √

    The process of gradually decreasing the learning rate during training.

    A technique to avoid vanishing gradient by imposing a ceiling on the values of the weights.

    Gradual corruption of the weights in the neural network if it is trained on noisy data.

    第 6 个问题
    1
    point

    6. 第 6 个问题

    What happens when you increase the regularization hyperparameter lambda?

    Weights are pushed toward becoming smaller (closer to 0)   √

    Weights are pushed toward becoming bigger (further from 0)

    Doubling lambda should roughly result in doubling the weights

    Gradient descent taking bigger steps with each iteration (proportional to lambda)

    第 7 个问题
    1
    point

    7. 第 7 个问题

    With the inverted dropout technique, at test time:

    You apply dropout (randomly eliminating units) and do not keep the 1/keep_prob factor in the calculations used in training     √

    You do not apply dropout (do not randomly eliminate units), but keep the 1/keep_prob factor in the calculations used in training.

    You apply dropout (randomly eliminating units) but keep the 1/keep_prob factor in the calculations used in training.

    You do not apply dropout (do not randomly eliminate units) and do not keep the 1/keep_prob factor in the calculations used in training

    第 8 个问题
    1
    point

    8. 第 8 个问题

    Increasing the parameter keep_prob from (say) 0.5 to 0.6 will likely cause the following: (Check the two that apply)

    Increasing the regularization effect     

    Reducing the regularization effect   √

    Causing the neural network to end up with a higher training set error

    Causing the neural network to end up with a lower training set error   √

    第 9 个问题
    1
    point

    9. 第 9 个问题

    Which of these techniques are useful for reducing variance (reducing overfitting)? (Check all that apply.)

    Dropout  √

    Data augmentation  √

    Vanishing gradient

    L2 regularization  √

    Gradient Checking

    Xavier initialization

    Exploding gradient

    第 10 个问题
    1
    point

    10. 第 10 个问题

    Why do we normalize the inputs xx?

    It makes the parameter initialization faster

    It makes it easier to visualize the data

    Normalization is another word for regularization--It helps to reduce variance

    It makes the cost function faster to optimize   √

  • 相关阅读:
    Navigator对象关于语言的属性
    对ng-repeat的表格内容添加不同样式:ng-style
    ng-repeat
    ES 6 : 函数的扩展
    二维码下载,区分是 ios 和 android
    gulp配置备份
    [转]移动端web页面使用字体的思考
    移动开发总结
    前端优化:雅虎35条
    input填写银行卡号,每四位空一隔
  • 原文地址:https://www.cnblogs.com/Dar-/p/9381087.html
Copyright © 2011-2022 走看看