原文:https://www.jianshu.com/p/06ae2373f560
1 import threading # 多线程模块 2 import queue # 队列模块 3 import requests 4 from lxml import etree 5 import time 6 import random 7 import json 8 9 concurrent = 3 # 采集线程数 10 conparse = 3 # 解析线程 11 12 13 class Parse(threading.Thread): # 解析线程类 14 # 初始化属性 15 def __init__(self, number, data_list, req_thread, f): 16 super(Parse, self).__init__() 17 self.number = number # 线程编号 18 self.data_list = data_list # 数据队列 19 self.req_thread = req_thread # 请求队列,为了判断采集线程存活状态 20 self.f = f # 获取文件对象 21 self.is_parse = True # 判断是否从数据队列里提取数据 22 23 24 def run(self): 25 print('启动%d号解析线程' % self.number) 26 # 无限循环, 27 while True: 28 # 如何判断解析线程的结束条件 29 for t in self.req_thread: # 循环所有采集线程 30 if t.is_alive(): # 判断线程是否存活 31 break 32 else: # 如果循环完毕,没有执行break语句,则进入else 33 if self.data_list.qsize() == 0: # 判断数据队列是否为空 34 self.is_parse = False # 设置解析为False 35 # 判断是否继续解析 36 if self.is_parse: # 解析 37 try: 38 data = self.data_list.get(timeout=3) # 从数据队列里提取一个数据 39 except Exception as e: # 超时以后进入异常 40 data = None 41 # 如果成功拿到数据,则调用解析方法 42 if data is not None: 43 self.parse(data) # 调用解析方法 44 else: 45 break # 结束while 无限循环 46 print('退出%d号解析线程' % self.number) 47 48 49 # 页面解析函数 50 def parse(self, data): 51 html = etree.HTML(data) 52 # 获取所有段子div 53 duanzi_div = html.xpath('//div[@id="content-left"]/div') 54 for duanzi in duanzi_div: 55 # 获取昵称 56 nick = duanzi.xpath('./div//h2/text()')[0] 57 nick = nick.replace(' ', '') 58 # 获取年龄 59 age = duanzi.xpath('.//div[@class="author clearfix"]/div/text()') 60 if len(age) > 0: 61 age = age[0] 62 else: 63 age = 0 64 # 获取性别 65 gender = duanzi.xpath('.//div[@class="author clearfix"]/div/@class') 66 if len(gender) > 0: 67 if 'women' in gender[0]: 68 gender = '女' 69 else: 70 gender = '男' 71 else: 72 gender = '中' 73 # 获取段子内容 74 content = duanzi.xpath('.//div[@class="content"]/span[1]/text()')[0].strip() 75 # 获取好笑数 76 good_num = duanzi.xpath('./div//span[@class="stats-vote"]/i/text()')[0] 77 # 获取评论 78 common_num = duanzi.xpath('./div//span[@class="stats-comments"]//i/text()')[0] 79 item = { 80 'nick': nick, 81 'age': age, 82 'gender': gender, 83 'content': content, 84 'good_num': good_num, 85 'common_num': common_num, 86 } 87 self.f.write(json.dumps(item, ensure_ascii=False) + ' ') 88 89 90 class Crawl(threading.Thread): # 采集线程类 91 # 初始化 92 def __init__(self, number, req_list, data_list): 93 # 调用Thread 父类方法 94 super(Crawl, self).__init__() 95 # 初始化子类属性 96 self.number = number 97 self.req_list = req_list 98 self.data_list = data_list 99 self.headers = { 100 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.89 Safari/537.36' 101 } 102 # 线程启动的时候调用 103 104 def run(self): 105 # 输出启动线程信息 106 print('启动采集线程%d号' % self.number) 107 # 如果请求队列不为空,则无限循环,从请求队列里拿请求url 108 while self.req_list.qsize() > 0: 109 # 从请求队列里提取url 110 url = self.req_list.get() 111 print('%d号线程采集:%s' % (self.number, url)) 112 # 防止请求频率过快,随机设置阻塞时间 113 time.sleep(random.randint(1, 3)) 114 # 发起http请求,获取响应内容,追加到数据队列里,等待解析 115 response = requests.get(url, headers=self.headers) 116 if response.status_code == 200: 117 self.data_list.put(response.text) # 向数据队列里追加 118 119 120 def main(): 121 # 生成请求队列 122 req_list = queue.Queue() 123 # 生成数据队列 ,请求以后,响应内容放到数据队列里 124 data_list = queue.Queue() 125 # 创建文件对象 126 f = open('duanzi.json', 'w', encoding='utf-8') 127 # 循环生成多个请求url 128 for i in range(1, 13 + 1): 129 base_url = 'https://www.qiushibaike.com/8hr/page/%d/' % i 130 # 加入请求队列 131 req_list.put(base_url) 132 # 生成N个采集线程 133 req_thread = [] 134 for i in range(concurrent): 135 t = Crawl(i + 1, req_list, data_list) # 创造线程 136 t.start() 137 req_thread.append(t) 138 # 生成N个解析线程 139 parse_thread = [] 140 for i in range(conparse): 141 t = Parse(i + 1, data_list, req_thread, f) # 创造解析线程 142 t.start() 143 parse_thread.append(t) 144 for t in req_thread: 145 t.join() 146 for t in parse_thread: 147 t.join() 148 # 关闭文件对象 149 f.close() 150 151 if __name__ == '__main__': 152 main()